The simple word Care may suffice to express [the journal’s] philosophical mission. The new journal is designed to promote better patient care by serving the expanded needs of all health professionals committed to the care of patients with diabetes. As such, the American Diabetes Association views Diabetes Care as a reaffirmation of Francis Weld Peabody’s contention that “the secret of the care of the patient is in caring for the patient.”

—Norbert Freinkel, Diabetes Care, January-February 1978

EDITOR IN CHIEF
Matthew C. Riddle, MD

ASSOCIATE EDITORS
George Bakris, MD
Lawrence Blonde, MD, FACP
Andrew J.M. Boulton, MD
David D’Alessio, MD
Mary de Groot, PhD
Eddie L. Greene, MD
Frank B. Hu, MD, MPH, PhD
Steven E. Kahn, MB, ChB
Sanjay Kaul, MD, FACC, FAHA
Derek LeRoith, MD, PhD
Robert G. Moses, MD
Stephen Rich, PhD
Julio Rosenstock, MD
William V. Tamborlane, MD
Judith Wylie-Rosett, EdD, RD

EDITORIAL BOARD
Nicola Abate, MD
Vanita R. Aroda, MD
Geremia Bolli, MD
John B. Buse, MD, PhD
Robert J. Chilton, DO, FACC, FAHA
Kenneth Cusi, MD, FACP, FACE
Paresh Dandona, MD, PhD
J. Hans DeVries, MD, PhD
Ele Ferrannini, MD
Franco Folli, MD, PhD
Meredith A. Hawkins, MD, MS
Richard Hellman, MD
Norbert Hermanns, PhD, MSc
Irl B. Hirsch, MD, MACP
George S. Jeha, MD
Lee M. Kaplan, MD, PhD
M. Sue Kirkman, MD
Idiko Lingvay, MD, MPH, MSCS
Harold David McIntyre, MD, FRACP

AMERICAN DIABETES ASSOCIATION OFFICERS

CHAIR OF THE BOARD
Karen Talmadge, PhD

PRESIDENT, MEDICINE & SCIENCE
Jane Reusch, MD

PRESIDENT, HEALTH CARE & EDUCATION
Felicia Hill-Briggs, PhD, ABPP

SECRETARY/TREASURER
Michael Ching, CPA

CHAIR OF THE BOARD-ELECT
David J. Herrick, MBA

PRESIDENT-ELECT, MEDICINE & SCIENCE
Louis Philipson, MD

PRESIDENT-ELECT, HEALTH CARE & EDUCATION
Gretchen Yousef, MS, RD, CDE

SECRETARY/TREASURER-ELECT
Brian Bertha, JD, MBA

INTERIM CHIEF EXECUTIVE OFFICER
Martha Parry Clark

CHIEF SCIENTIFIC, MEDICAL & MISSION OFFICER
William T. Cefalu, MD

The mission of the American Diabetes Association is to prevent and cure diabetes and to improve the lives of all people affected by diabetes.
Diabetes Care is a journal for the health care practitioner that is intended to increase knowledge, stimulate research, and promote better management of people with diabetes. To achieve these goals, the journal publishes original research on human studies in the following categories: Clinical Care/Education/Nutrition/Psychosocial Research, Epidemiology/Health Services Research, Emerging Technologies and Therapeutics, Pathophysiology/Complications, and Cardiovascular and Metabolic Risk. The journal also publishes ADA statements, consensus reports, clinically relevant review articles, letters to the editor, and health/medical news or points of view. Topics covered are of interest to clinically oriented physicians, researchers, epidemiologists, psychologists, diabetes educators, and other health professionals. More information about the journal can be found online at care.diabetesjournals.org.

Copyright © 2017 by the American Diabetes Association, Inc. All rights reserved. Printed in the USA. Requests for permission to reuse content should be sent to Copyright Clearance Center at www.copyright.com or 222 Rosewood Dr., Danvers, MA 01923; phone: (978) 750-8400; fax: (978) 646-8600. Requests for permission to translate should be sent to Permissions Editor, American Diabetes Association, at permissions@diabetes.org. The American Diabetes Association reserves the right to reject any advertisement for any reason, which need not be disclosed to the party submitting the advertisement. Commercial reprint orders should be directed to Sheridan Content Services, (800) 635-7181, ext. 8065.

Single issues of Diabetes Care can be ordered by calling toll-free (800) 232-3472, 8:30 A.M. to 5:00 P.M. EST, Monday through Friday. Outside the United States, call (703) 549-1500. Rates: $75 in the United States, $95 in Canada and Mexico, and $125 for all other countries. Diabetes Care is available online at care.diabetesjournals.org. Please call the numbers listed above, e-mail membership@diabetes.org, or visit the online journal for more information about submitting manuscripts, publication charges, ordering reprints, subscribing to the journal, becoming an ADA member, advertising, permission to reuse content, and the journal's publication policies.

Periodicals postage paid at Arlington, VA, and additional mailing offices.
Standards of Medical Care in Diabetes—2018

S1 Introduction
S3 Professional Practice Committee
S4 Summary of Revisions: Standards of Medical Care in Diabetes—2018
S7 1. Improving Care and Promoting Health in Populations
 Diabetes and Population Health
 Tailoring Treatment for Social Context
S13 2. Classification and Diagnosis of Diabetes
 Classification
 Diagnostic Tests for Diabetes
 Categories of Increased Risk for Diabetes (Prediabetes)
 Type 1 Diabetes
 Type 2 Diabetes
 Gestational Diabetes Mellitus
 Monogenic Diabetes Syndromes
 Cystic Fibrosis–Related Diabetes
 Posttransplantation Diabetes Mellitus
S28 3. Comprehensive Medical Evaluation and Assessment of Comorbidities
 Patient-Centered Collaborative Care
 Comprehensive Medical Evaluation
 Assessment of Comorbidities
S38 4. Lifestyle Management
 Diabetes Self-Management Education and Support
 Nutrition Therapy
 Physical Activity
 Smoking Cessation: Tobacco and e-Cigarettes
 Psychosocial Issues
S51 5. Prevention or Delay of Type 2 Diabetes
 Lifestyle Interventions
 Pharmacologic Interventions
 Prevention of Cardiovascular Disease
 Diabetes Self-management Education and Support
S55 6. Glycemic Targets
 Assessment of Glycemic Control
 A1C Testing
 A1C Goals
 Hypoglycemia
 Intercurrent Illness
S65 7. Obesity Management for the Treatment of Type 2 Diabetes
 Assessment
 Diet, Physical Activity, and Behavioral Therapy
 Pharmacotherapy
 Metabolic Surgery
S73 8. Pharmacologic Approaches to Glycemic Treatment
 Pharmacologic Therapy for Type 1 Diabetes
 Surgical Treatment for Type 1 Diabetes
 Pharmacologic Therapy for Type 2 Diabetes
S86 9. Cardiovascular Disease and Risk Management
 Hypertension/Blood Pressure Control
 Lipid Management
 Antiplatelet Agents
 Coronary Heart Disease
S105 10. Microvascular Complications and Foot Care
 Diabetic Kidney Disease
 Diabetic Retinopathy
 Neuropathy
 Foot Care
S119 11. Older Adults
 Neurocognitive Function
 Hypoglycemia
 Treatment Goals
 Pharmacologic Therapy
 Treatment in Skilled Nursing Facilities and Nursing Homes
 End-of-Life Care
S126 12. Children and Adolescents
 Type 1 Diabetes
 Type 2 Diabetes
 Transition From Pediatric to Adult Care
S137 13. Management of Diabetes in Pregnancy
 Diabetes in Pregnancy
 Preconception Counseling
 Glycemic Targets in Pregnancy
 Management of Gestational Diabetes Mellitus
 Management of Preexisting Type 1 Diabetes and Type 2 Diabetes in Pregnancy
 Pregnancy and Drug Considerations
 Postpartum Care
S144 14. Diabetes Care in the Hospital
 Hospital Care Delivery Standards
 Glycemic Targets in Hospitalized Patients
 Bedside Blood Glucose Monitoring
 Anti-hyperglycemic Agents in Hospitalized Patients
 Hypoglycemia
 Medical Nutrition Therapy in the Hospital
 Self-management in the Hospital
 Standards for Special Situations
 Transition From the Acute Care Setting
 Preventing Admissions and Readmissions
S152 15. Diabetes Advocacy
 Advocacy Position Statements
S154 Professional Practice Committee, American College of Cardiology—Designated Representatives, and American Diabetes Association Staff Disclosures
S156 Index

This issue is freely accessible online at care.diabetesjournals.org.
Keep up with the latest information for Diabetes Care and other ADA titles via Facebook (/ADAJournals) and Twitter (@ADA_Journals).
Diabetes is a complex, chronic illness requiring continuous medical care with multifactorial risk-reduction strategies beyond glycemic control. Ongoing patient self-management education and support are critical to preventing acute complications and reducing the risk of long-term complications. Significant evidence exists that supports a range of interventions to improve diabetes outcomes.

The American Diabetes Association’s (ADA’s) “Standards of Medical Care in Diabetes,” referred to as the Standards of Care, is intended to provide clinicians, patients, researchers, payers, and other interested individuals with the components of diabetes care, general treatment goals, and tools to evaluate the quality of care. The Standards of Care recommendations are not intended to preclude clinical judgment and must be applied in the context of excellent clinical care, with adjustments for individual preferences, comorbidities, and other patient factors. For more detailed information about management of diabetes, please refer to Medical Management of Type 1 Diabetes (1) and Medical Management of Type 2 Diabetes (2).

The recommendations include screening, diagnostic, and therapeutic actions that are known or believed to favorably affect health outcomes of patients with diabetes. Many of these interventions have also been shown to be cost-effective (3).

The ADA strives to improve and update the Standards of Care to ensure that clinicians, health plans, and policy makers can continue to rely on them as the most authoritative and current guidelines for diabetes care. Readers who wish to comment on the 2018 Standards of Care are invited to do so at professional.diabetes.org/SOC.

Standards of Care
This document is an official ADA position, is authored by the ADA, and provides all of the ADA’s current clinical practice recommendations. To update the Standards of Care, the ADA’s Professional Practice Committee (PPC) performs an extensive clinical diabetes literature search, supplemented with input from ADA staff and the medical community at large. The PPC updates the Standards of Care annually, or more frequently online should the PPC determine that new evidence or regulatory changes (e.g., drug approvals, label changes) merit immediate incorporation. The Standards of Care supersedes all previous ADA position statements—and the recommendations therein—on clinical topics within the purview of the Standards of Care; ADA position statements, while still containing valuable analyses, should not be considered the ADA’s current position. The Standards of Care receives annual review and approval by the ADA Board of Directors.

ADA Statement
An ADA statement is an official ADA point of view or belief that does not contain clinical practice recommendations and may be issued on advocacy, policy, economic, or medical issues related to diabetes. ADA statements undergo a formal review process, including a review by the appropriate national committee, ADA mission staff, and the Board of Directors.

Consensus Report
An expert consensus report of a particular topic contains a comprehensive examination and is authored by an expert panel (i.e., consensus panel) and represents the panel’s collective analysis, evaluation, and opinion. The need for an expert consensus report arises when clinicians, scientists, regulators, and/or policy makers desire guidance and/or clarity on a medical or scientific issue related to diabetes for which the evidence is contradictory, emerging, or incomplete. Expert consensus reports may also highlight gaps in evidence and propose areas of future research to address these gaps. An expert consensus report is not an ADA position and represents expert opinion only but is produced under the auspices of the Association by invited experts. An expert consensus report may be developed after an ADA Clinical Conference or Research Symposium.

“Standards of Medical Care in Diabetes” was originally approved in 1988.

© 2017 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals.org/content/license.
Scientific Review
A scientific review is a balanced review and analysis of the literature on a scientific or medical topic related to diabetes. A scientific review is not an ADA position and does not contain clinical practice recommendations but is produced under the auspices of the Association by invited experts. The scientific review may provide a scientific rationale for clinical practice recommendations in the Standards of Care. The category may also include task force and expert committee reports.

GRADING OF SCIENTIFIC EVIDENCE
Since the ADA first began publishing practice guidelines, there has been considerable evolution in the evaluation of scientific evidence and in the development of evidence-based guidelines. In 2002, the ADA developed a classification system to grade the quality of scientific evidence supporting ADA recommendations. A 2015 analysis of the evidence cited in the Standards of Care found steady improvement in quality over the previous 10 years, with the 2014 Standards of Care for the first time having the majority of bulleted recommendations supported by A- or B-level evidence (4). A grading system (Table 1) developed by the ADA and modeled after existing methods was used to clarify and codify the evidence that forms the basis for the recommendations. ADA recommendations are assigned ratings of A, B, or C, depending on the quality of evidence. Expert opinion E is a separate category for recommendations in which there is no evidence from clinical trials, in which clinical trials may be impractical, or in which there is conflicting evidence.

Recommendations with an A rating are based on large well-designed clinical trials or well-done meta-analyses. Generally, these recommendations have the best chance of improving outcomes when applied to the population to which they are appropriate. Recommendations with lower levels of evidence may be equally important but are not as well supported.

Of course, evidence is only one component of clinical decision-making. Clinicians care for patients, not populations; guidelines must always be interpreted with the individual patient in mind. Individual circumstances, such as comorbid and coexisting diseases, age, education, disability, and, above all, patients’ values and preferences, must be considered and may lead to different treatment targets and strategies. Furthermore, conventional evidence hierarchies, such as the one adapted by the ADA, may miss nuances important in diabetes care. For example, although there is excellent evidence from clinical trials supporting the importance of achieving multiple risk factor control, the optimal way to achieve this result is less clear. It is difficult to assess each component of such a complex intervention.

References

Table 1—ADA evidence-grading system for “Standards of Medical Care in Diabetes”

<table>
<thead>
<tr>
<th>Level of evidence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Clear evidence from well-conducted, generalizable randomized controlled trials that are adequately powered, including: Evidence from a well-conducted multicenter trial Evidence from a meta-analysis that incorporated quality ratings in the analysis Compelling nonexperimental evidence, i.e., “all or none” rule developed by the Centre for Evidence-Based Medicine at the University of Oxford Supportive evidence from well-conducted randomized controlled trials that are adequately powered, including: Evidence from a well-conducted trial at one or more institutions Evidence from a meta-analysis that incorporated quality ratings in the analysis</td>
</tr>
<tr>
<td>B</td>
<td>Supportive evidence from well-conducted cohort studies Evidence from a well-conducted prospective cohort study or registry Evidence from a well-conducted meta-analysis of cohort studies Supportive evidence from a well-conducted case-control study</td>
</tr>
<tr>
<td>C</td>
<td>Supportive evidence from poorly controlled or uncontrolled studies Evidence from randomized clinical trials with one or more major or three or more minor methodological flaws that could invalidate the results Evidence from observational studies with high potential for bias (such as case series with comparison with historical controls) Evidence from case series or case reports Conflicting evidence with the weight of evidence supporting the recommendation</td>
</tr>
<tr>
<td>E</td>
<td>Expert consensus or clinical experience</td>
</tr>
</tbody>
</table>
The Professional Practice Committee (PPC) of the American Diabetes Association (ADA) is responsible for the “Standards of Medical Care in Diabetes” position statement, referred to as the Standards of Care. The PPC is a multidisciplinary expert committee comprised of physicians, diabetes educators, registered dietitians, and others who have expertise in a range of areas, including adult and pediatric endocrinology, epidemiology, public health, lipid research, hypertension, preconception planning, and pregnancy care. Appointment to the PPC is based on excellence in clinical practice and research. Although the primary role of the PPC is to review and update the Standards of Care, it may also be involved in ADA statements, reports, and reviews.

The ADA adheres to the National Academy of Medicine Standards for Developing Trustworthy Clinical Practice Guidelines. All members of the PPC are required to disclose potential conflicts of interest with industry and/or other relevant organizations. These disclosures are discussed at the onset of each Standards of Care revision meeting. Members of the committee, their employers, and their disclosed conflicts of interest are listed in the “Professional Practice Committee Disclosures” table (see pp. S154–S155). The ADA funds development of the Standards of Care out of its general revenues and does not use industry support for this purpose.

For the current revision, PPC members systematically searched MEDLINE for human studies related to each section and published since 1 January 2017. Recommendations were revised based on new evidence or, in some cases, to clarify the prior recommendation or match the strength of the wording to the strength of the evidence. A table linking the changes in recommendations to new evidence can be reviewed at professional.diabetes.org/SOC. The Standards of Care was approved by ADA’s Board of Directors, which includes health care professionals, scientists, and lay people.

Feedback from the larger clinical community was valuable for the 2017 revision of the Standards of Care. Readers who wish to comment on the 2018 Standards of Care are invited to do so at professional.diabetes.org/SOC.

The PPC would like to thank the following individuals who provided their expertise in reviewing and/or consulting with the committee: Pamela Allweiss, MD, MPH; David D’Alessio, MD; Thomas Gardner, MD, MS; William H. Herman, MD, MPH; Felicia Hill-Briggs, PhD; Nisa Maruthur, MD, MHS; Alicia McAuliffe-Fogarty, PhD, CPSychol; Jane Reusch, MD; and Sharon Solomon, MD.

MEMBERS OF THE PPC
Rita R. Kalyani, MD, MHS, FACP (Chair)
Christopher P. Cannon, MD
Andrea L. Cherrington, MD, MPH*
Donald R. Coustan, MD
Jan H. de Boer, MD, MS*
Hope Feldman, CRNP, FNP-BC
Judith Fradkin, MD
David Maahs, MD, PhD
Melinda Maryniuk, MEd, RD, CDE
Medha N. Munshi, MD*
Joshua J. Neumiller, PharmD, CDE, FASCP
Guillermo E. Umpierrez, MD, CDE, FACE, FACP*
*Subgroup leaders

AMERICAN COLLEGE OF CARDIOLOGY—DESIGNATED REPRESENTATIVES (SECTION 9)
Sandeep Das, MD, MPH, FACC
Mikhail Kosiborod, MD, FACC

ADA STAFF
Erika Gebel Berg, PhD
(Corresponding author: eberg@diabetes.org)
Tamara Darsow, PhD
Matthew P. Petersen
Sacha Uelmen, RDN, CDE
William T. Cefalu, MD

© 2017 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals.org/content/license.
Summary of Revisions: *Standards of Medical Care in Diabetes—2018*

Diabetes Care 2018;41(Suppl. 1):S4–56 | https://doi.org/10.2337/dc18-SREV01

GENERAL CHANGES

The field of diabetes care is rapidly changing as new research, technology, and treatments that can improve the health and well-being of people with diabetes continue to emerge. With annual updates since 1989, the American Diabetes Association’s (ADA’s) “Standards of Medical Care in Diabetes” (Standards of Care) has long been a leader in producing guidelines that capture the most current state of the field. Starting in 2018, the ADA will update the Standards of Care even more frequently online should the Professional Practice Committee determine that new evidence or regulatory changes merit immediate incorporation into the Standards of Care. In addition, the Standards of Care will now become the ADA’s sole source of clinical practice recommendations, superseding all prior position and scientific statements. The change is intended to clarify the Association’s current positions by consolidating all clinical practice recommendations into the Standards of Care. For further information on changes to the classification and definitions of ADA Standards of Care, statements, reports, and reviews, see the Introduction.

Although levels of evidence for several recommendations have been updated, these changes are not addressed below as the clinical recommendations have remained the same. Changes in evidence level from, for example, E to C are not noted below. The 2018 Standards of Care contains, in addition to many minor changes that clarify recommendations or reflect new evidence, the following more substantive revisions.

SECTION CHANGES

Section 1. Improving Care and Promoting Health in Populations

This section was renamed to better capture its subject matter and was reorganized for clarity.

A new recommendation was added about using reliable data metrics to assess and improve the quality of diabetes care and reduce costs.

Additional discussion was included on the social determinants of health.

Text was added describing the emerging use of telemedicine in diabetes care.

Section 2. Classification and Diagnosis of Diabetes

As a result of recent evidence describing potential limitations in A1C measurements due to hemoglobin variants, assay interference, and conditions associated with red blood cell turnover, additional recommendations were added to clarify the appropriate use of the A1C test generally and in the diagnosis of diabetes in these special cases.

The recommendation for testing for prediabetes and type 2 diabetes in children and adolescents was changed, suggesting testing for youth who are overweight or obese and have one or more additional risk factors (Table 2.5).

A clarification was added that, while generally not recommended, community screening may be considered in specific situations where an adequate referral system for positive tests is established.

Additional detail was added regarding current research on antihyperglycemic treatment in people with posttransplantation diabetes mellitus.

Section 3. Comprehensive Medical Evaluation and Assessment of Comorbidities

The table describing the components of a comprehensive medical evaluation (Table 3.1) was substantially redesigned and reorganized, incorporating information about the recommended frequency of the components of care at both initial and follow-up visits.

The immunization section was updated for clarity to more closely align with recommendations from the Centers for Disease Control and Prevention.

Text was added about the importance of language choice in patient-centered communication.

Pancreatitis was added to the section on comorbidities, including a new recommendation about the consideration of islet autotransplantation to prevent postsurgical diabetes in patients with medically refractory chronic pancreatitis who require total pancreatectomy.

A recommendation was added to consider checking serum testosterone in men with diabetes and signs and symptoms of hypogonadism.

Section 4. Lifestyle Management

A recommendation was modified to include individual and group settings as well as technology-based platforms for the delivery of effective diabetes self-management education and support.

Additional explanation was added to the nutrition section to clarify the ADA’s recommendations that there is no universal ideal macronutrient distribution and that eating plans should be individualized.

Text was added to address the role of low-carbohydrate diets in people with diabetes.

Section 5. Prevention or Delay of Type 2 Diabetes

The recommendation regarding the use of metformin in the prevention of prediabetes was reworded to better reflect the data from the Diabetes Prevention Program.

Section 6. Glycemic Targets

Based on new data, the recommendation for the use of continuous glucose monitoring (CGM) in adults with type 1 diabetes is no longer limited to those ages 25 and above but has been expanded to all adults

© 2017 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals.org/content/license.
Additional text was added about a new intermittent or “flash” CGM device that was recently approved for adult use.

Details were added about new CGM devices that no longer require confirmatory self-monitoring of blood glucose for treatment decisions.

As in Section 2, this section now includes an expanded discussion of the limitations of A1C in certain populations based on the presence of hemoglobin variants, differences in red blood cell turnover rates, ethnicity, and age.

To clarify the classification of hypoglycemia, level 1 hypoglycemia was renamed “hypoglycemia alert value” from “glucose alert value.”

Section 7. Obesity Management for the Treatment of Type 2 Diabetes

To provide a second set of cost information, the table of medications for the treatment of obesity (Table 7.2) was updated to include National Average Drug Acquisition Cost (NADAC) prices.

Section 8. Pharmacologic Approaches to Glycemic Treatment

New recommendations for antihyperglycemic therapy for adults with type 2 diabetes have been added to reflect recent cardiovascular outcomes trial (CVOT) data, indicating that people with atherosclerotic cardiovascular disease (ASCVD) should begin with lifestyle management and metformin and subsequently incorporate an agent proven to reduce major adverse cardiovascular events and/or cardiovascular mortality after considering drug-specific and patient factors.

The algorithm for antihyperglycemic treatment (Fig. 8.1) was updated to incorporate the new ASCVD recommendation.

A new table was added (Table 8.1) to summarize drug-specific and patient factors of antihyperglycemic agents. Figure 8.1 and Table 8.1 are meant to be used together to guide the choice of antihyperglycemic agents as part of patient–provider shared decision-making.

Table 8.2 was modified to focus on the pharmacology and mechanisms of available glucose-lowering medicines in the U.S.

To provide a second set of cost information for antihyperglycemic agents, NADAC data was added to the average wholesale prices information in Table 8.3 and Table 8.4.

Section 9. Cardiovascular Disease and Risk Management

A new recommendation was added that all hypertensive patients with diabetes should monitor their blood pressure at home to help identify masked or white coat hypertension, as well as to improve medication-taking behavior.

A new figure (Fig. 9.1) was added to illustrate the recommended antihypertensive treatment approach for adults with diabetes and hypertension.

A new table (Table 9.1) was added summarizing studies of intensive versus standard hypertension treatment strategies.

A recommendation was added to consider mineralocorticoid receptor antagonist therapy in patients with resistant hypertension.

The lipid management recommendations were modified to stratify risk based on two broad categories: those with documented ASCVD and those without.

Owing to studies suggesting similar benefits in older versus middle-aged adults, recommendations were consolidated for patients with diabetes 40–75 years and >75 years of age without ASCVD to use moderate-intensity statin.

Table 9.2 (“Recommendations for statin and combination treatment in adults with diabetes”) was updated based on the new risk stratification approach and consolidated age-groups.

To accommodate recent data on new classes of lipid-lowering medications, a recommendation was modified to provide additional guidance on adding nonstatin LDL-lowering therapies for patients with diabetes and ASCVD who have LDL cholesterol ≥70 mg/dL despite maximally tolerated statin dose.

The same recommendations were added here as in Section 8 that people with type 2 diabetes and ASCVD should begin with lifestyle management and metformin and subsequently incorporate an agent proven to reduce major adverse cardiovascular events and/or cardiovascular mortality after considering drug-specific and patient factors.

The text was substantially modified to describe CVOT data on new diabetes agents and outcomes in people with type 2 diabetes, providing support for the new ASCVD recommendations.

A new Table 9.4 was added to summarize the CVOT studies.

Section 10. Microvascular Complications and Foot Care

A new table was added (Table 10.1), replacing previous tables 10.1 and 10.2, that combines information on staging chronic kidney disease and the appropriate kidney-related care for each stage.

A new Table 10.2 was included describing the complications of chronic kidney disease and related medical and laboratory evaluations.

A new section on acute kidney injury was included.

The effect of specific glucose-lowering medications on the delay and progression of kidney disease was discussed, with reference to recent CVOT trials that examined kidney effects as secondary outcomes.

A new recommendation was added on the noninferiority of the anti–vascular endothelial growth factor treatment ranibizumab in reducing the risk of vision loss in patients with proliferative diabetic retinopathy when compared with the traditional standard treatment, panretinal laser photocoagulation therapy.

A new section was added describing the mixed evidence on the use of hyperbaric oxygen therapy in people with diabetic foot ulcers.

Section 11. Older Adults

Three new recommendations were added to highlight the importance of individualizing pharmacologic therapy in older adults to reduce the risk of hypoglycemia, avoid overtreatment, and simplify complex regimens if possible while maintaining the A1C target.

Section 12. Children and Adolescents

To make the section more comprehensive and to reflect emerging data on diabetes technologies, additional recommendations were added on the treatment of type 1 diabetes in children and adolescents regarding intensive insulin regimens, self-monitoring of blood glucose, CGM, and automated insulin delivery systems.

The recommended risk-based timing of celiac disease screenings for youth and adolescents with type 1 diabetes was defined.

A recommendation regarding estimating glomerular filtration rate was removed because of the poor performance of the estimating equation in youth.

The type 2 diabetes in children section was substantially expanded, with several new recommendations, based on a recent ADA review.

Section 13. Management of Diabetes in Pregnancy

A recommendation was added to emphasize that insulin is the preferred agent for
the management of type 1 and type 2 diabetes in pregnancy.

Based on new evidence, a recommendation was added for women with type 1 and type 2 diabetes to take low-dose aspirin starting at the end of the first trimester to lower the risk of preeclampsia.

Section 14. Diabetes Care in the Hospital
Insulin degludec was added to the insulin dosing for enteral/parenteral feedings (Table 14.1).
1. Improving Care and Promoting Health in Populations: *Standards of Medical Care in Diabetes—2018*

The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multi-disciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/content/clinical-practice-recommendations.

DIABETES AND POPULATION HEALTH

Recommendations

- Ensure treatment decisions are timely, rely on evidence-based guidelines, and are made collaboratively with patients based on individual preferences, prognoses, and comorbidities. B
- Align approaches to diabetes management with the Chronic Care Model, emphasizing productive interactions between a prepared proactive care team and an informed activated patient. A
- Care systems should facilitate team-based care, patient registries, decision support tools, and community involvement to meet patient needs. B
- Efforts to assess the quality of diabetes care and create quality improvement strategies should incorporate reliable data metrics, to promote improved processes of care and health outcomes, with simultaneous emphasis on costs. E

Population health is defined as “the health outcomes of a group of individuals, including the distribution of health outcomes within the group”; these outcomes can be measured in terms of health outcomes (mortality, morbidity, health, and functional status), disease burden (incidence and prevalence), and behavioral and metabolic factors (exercise, diet, A1C, etc.) (1). Clinical practice recommendations for health care providers are tools that can ultimately improve health across populations; however, for optimal outcomes, diabetes care must also be individualized for each patient. Thus, efforts to improve population health will require a combination of system-level and patient-level approaches. With such an integrated approach in mind, the American Diabetes Association (ADA) highlights the importance of patient-centered care, defined as care that is respectful of and responsive to individual patient preferences, needs, and values and that ensures that patient values guide all clinical decisions (2). Clinical
practice recommendations, whether based on evidence or expert opinion, are intended to guide an overall approach to care. The science and art of medicine come together when the clinician is faced with making treatment recommendations for a patient who may not meet the eligibility criteria used in the studies on which guidelines are based. Recognizing that one size does not fit all, the standards presented here provide guidance for when and how to adapt recommendations for an individual.

Care Delivery Systems
Over the past 10 years, the proportion of patients with diabetes who achieve recommended A1C, blood pressure, and LDL cholesterol levels has increased (3). The mean A1C nationally among people with diabetes has declined from 7.6% (60 mmol/mol) in 1999–2002 to 7.2% (55 mmol/mol) in 2007–2010 based on the National Health and Nutrition Examination Survey (NHANES), with younger adults less likely to meet treatment targets than older adults (3). This has been accompanied by improvements in cardiovascular outcomes and has led to substantial reductions in end-stage microvascular complications.

Nevertheless, 33–49% of patients still do not meet targets for glycemic, blood pressure, or cholesterol control, and only 14% meet targets for all three measures while also avoiding smoking (3). Evidence suggests that progress in cardiovascular risk factor control (particularly tobacco use) may be slowing (3,4). Certain segments of the population, such as young adults and patients with complex comorbidities, financial or other social hardships, and/or limited English proficiency, face particular challenges to goal-based care (5–7). Even after adjusting for these patient factors, the persistent variability in the quality of diabetes care across providers and practice settings indicates that substantial system-level improvements are still needed.

Chronic Care Model
Numerous interventions to improve adherence to the recommended standards have been implemented. However, a major barrier to optimal care is a delivery system that is often fragmented, lacks clinical information capabilities, duplicates services, and is poorly designed for the coordinated delivery of chronic care. The Chronic Care Model (CCM) takes these factors into consideration and is an effective framework for improving the quality of diabetes care (8).

Six Core Elements. The CCM includes six core elements to optimize the care of patients with chronic disease:

1. Delivery system design (moving from a reactive to a proactive care delivery system where planned visits are coordinated through a team-based approach)
2. Self-management support
3. Decision support (basing care on evidence-based, effective care guidelines)
4. Clinical information systems (using registries that can provide patient-specific and population-based support to the care team)
5. Community resources and policies (identifying or developing resources to support healthy lifestyles)
6. Health systems (to create a quality-oriented culture)

Redefining the roles of the health care delivery team and empowering patient self-management are fundamental to the successful implementation of the CCM (9). Collaborative, multidisciplinary teams are best suited to provide care for people with chronic conditions such as diabetes and to facilitate patients’ self-management (10–12).

Strategies for System-Level Improvement
Optimal diabetes management requires an organized, systematic approach and the involvement of a coordinated team of dedicated health care professionals working in an environment where patient-centered high-quality care is a priority (7,13,14). While many diabetes processes of care have improved nationally in the past decade, the overall quality of care for patients with diabetes remains suboptimal (15). Efforts to increase the quality of diabetes care include providing care that is concordant with evidence-based guidelines (16); expanding the role of teams to implement more intensive disease management strategies (7,17,18); tracking medication-taking behavior at a systems level (19); redesigning the organization of care process (20); implementing electronic health record tools (21,22); empowering and educating patients (23,24); removing financial barriers and reducing patient out-of-pocket costs for diabetes education, eye exams, self-monitoring of blood glucose, and necessary medications (7); assessing and addressing psychosocial issues (25,26); and identifying, developing, and engaging community resources and public policies that support healthy lifestyles (27). The National Diabetes Education Program maintains an online resource (www.betterdiabetescare.nih.gov) to help health care professionals design and implement more effective health care delivery systems for those with diabetes.

The care team, which includes the patient, should prioritize timely and appropriate intensification of lifestyle and/or pharmacologic therapy for patients who have not achieved the recommended metabolic targets (28–30). Strategies shown to improve care team behavior and thereby catalyze reductions in A1C, blood pressure, and/or LDL cholesterol include engaging in explicit and collaborative goal setting with patients (31,32); identifying and addressing language, numeracy, or cultural barriers to care (33–35); integrating evidence-based guidelines and clinical information tools into the process of care (16,36,37); soliciting performance feedback, setting reminders, and providing structured care (e.g., guidelines, formal case management, and patient education resources) (7); and incorporating care management teams including nurses, dietitians, pharmacists, and other providers (17,38). Initiatives such as the Patient-Centered Medical Home show promise for improving health outcomes by fostering comprehensive primary care and offering new opportunities for team-based chronic disease management (39).

For rural populations or those with limited physical access to health care, telemedicine is an approach with a growing body of evidence for its effectiveness, particularly with regards to glycemic control as measured by A1C (40,41). Telemedicine is defined as the use of telecommunications to facilitate remote delivery of health-related services and clinical information (42). Interactive strategies that facilitate communication between providers and patients, including the use of web-based portal or text messaging and those that incorporate medication adjustment appear more effective. There is limited data available on the cost-effectiveness of these strategies.

Successful diabetes care also requires a systematic approach to supporting patients’ behavior change efforts. High-quality diabetes self-management education and
support (DSMES) has been shown to improve patient self-management, satisfaction, and glucose outcomes. National DSMES standards call for an integrated approach that includes clinical content and skills, behavioral strategies (goal setting, problem solving), and engagement with psychosocial concerns (26). For more information on DSMES, see Section 4 “Lifestyle Management.”

In devising approaches to support disease self-management, it is notable that in 23% of cases, uncontrolled A1C, blood pressure, or lipids was associated with poor medication-taking behaviors (19). At a system level, “adequate” medication taking is defined as 80% (calculated as the number of pills taken by the patient in a given time period divided by the number of pills prescribed by the physician in that same time period) (19). If medication taking is 80% or above and treatment goals are not met, then treatment intensification should be considered (e.g., uptitration). Barriers to medication taking may include patient factors (remembering to obtain or take medications, fear, depression, or health beliefs), medication factors (complexity, multiple daily dosing, cost, or side effects), and system factors (inadequate follow-up or support). Success in overcoming barriers to medication taking may be achieved if the patient and provider agree on a targeted approach for a specific barrier (11).

The Affordable Care Act has resulted in increased access to care for many individuals with diabetes with an emphasis on health promotion and disease prevention (43). As mandated by the Affordable Care Act, the Agency for Healthcare Research and Quality developed a National Quality Strategy based on the triple aims that include improving the health of a population, overall quality and patient experience of care, and per capita cost (44,45).

As health care systems and practices adapt to the changing landscape of health care, it will be important to integrate traditional disease-specific metrics with measures of patient experience, as well as cost, in assessing the quality of diabetes care (46,47). Information and guidance specific to quality improvement and practice transformation for diabetes care is available from the National Diabetes Education Program practice transformation website and the National Institute for Diabetes and Digestive and Kidney Diseases report on diabetes care and quality (48,49). Using patient registries and electronic health records, health systems can evaluate the quality of diabetes care being delivered and perform intervention cycles as part of quality improvement strategies (50). Critical to these efforts is provider adherence to clinical practice recommendations and accurate, reliable data metrics that include sociodemographic variables to examine health equity within and across populations (51).

In addition to quality improvement efforts, other strategies that simultaneously improve the quality of care and could potentially reduce costs are gaining momentum and include reimbursement structures that, in contrast to visit-based billing, reward the provision of appropriate and high-quality care to achieve metabolic goals (52) and incentives that accommodate personalized care goals (7,53).

TAILORING TREATMENT FOR SOCIAL CONTEXT

Recommendations

- Providers should assess social context, including potential food insecurity, housing stability, and financial barriers, and apply that information to treatment decisions. **A**
- Refer patients to local community resources when available. **B**
- Provide patients with self-management support from lay health coaches, navigators, or community health workers when available. **A**

Health inequities related to diabetes and its complications are well documented and are heavily influenced by social determinants of health (54–58). Social determinants of health are defined as the economic, environmental, political, and social conditions in which people live and are responsible for a major part of health inequality worldwide (59). The ADA recognizes the association between social and environmental factors and the prevention and treatment of diabetes and has issued a call for research that seeks to better understand how these social determinants influence behaviors and how the relationships between these variables might be modified for the prevention and management of diabetes (60). While a comprehensive strategy to reduce diabetes-related health inequities in populations has not been formally studied, general recommendations from other chronic disease models can be drawn upon to inform systems-level strategies in diabetes. For example, the National Academy of Medicine has published a framework for educating health care professionals on the importance of social determinants of health. Furthermore, there are resources available for the inclusion of standardized sociodemographic variables in electronic medical records to facilitate the measurement of health inequities as well as the impact of interventions designed to reduce those inequities (61–63).

Social determinants of health are not always recognized and often go undiscussed in the clinical encounter (57). A study by Piette et al. (64) found that among patients with chronic illnesses, two-thirds of those who reported not taking medications as prescribed due to cost never shared this with their physician. In a more recent study using data from the National Health Interview Survey (NHIS), Patel et al. (57) found that half of adults with diabetes reported financial stress and one-fifth reported food insecurity (FI). Creating systems-level mechanisms to screen for social determinants of health may help overcome structural barriers and communication gaps between patients and providers (57). In addition, brief, validated screening tools for some social determinants of health exist and could facilitate discussion around factors that significantly impact treatment during the clinical encounter. Below is a discussion of assessment and treatment considerations in the context of FI, homelessness, and limited English proficiency/low literacy.

Food Insecurity

FI is the unreliable availability of nutritious food and the inability to consistently obtain food without resorting to socially unacceptable practices. Over 14% (or one of every seven people) of the U.S. population is food insecure. The rate is higher in some racial/ethnic minority groups, including African American and Latino populations, in low-income households, and in homes headed by a single mother. The risk for type 2 diabetes is increased twofold in those with FI (60). Risk for FI can be assessed with a validated two-item screening tool (65) that includes the statements: 1) “Within the past 12 months we worried whether our food would run out before we got money to buy more” and 2) “Within the past 12 months the food we bought just didn’t last and we didn’t have
money to get more.” An affirmative re-
sponse to either statement had a sensi-
tivity of 97% and specificity of 83%.

Treatment Considerations
In those with diabetes and FI, the priority
is mitigating the increased risk for un-
controlled hyperglycemia and severe hypo-
glycemia. Reasons for the increased risk
of hyperglycemia include the steady con-
sumption of inexpensive carbohydrate-
rich processed foods, binge eating, finan-
cial constraints to the filling of diabetes
medication prescriptions, and anxiety/
depression leading to poor diabetes self-
care behaviors. Hypoglycemia can occur as
a result of inadequate or erratic carbohydrate
consumption following the administration
of sulfonlyureas or insulin.

If using a sulfonlyurea in patients with
FI, glipizide may be considered due to its
relatively short half-life. It can be taken
immediately before meals, thus obviating
the need to plan meals to an extent that
may be unreachable for those with FI.

For those needing insulin, rapid-acting
insulin analogs, preferably delivered by a
pen, may be used immediately after meal
consumption, whenever food becomes
available. While such insulin analogs
may be costly, many pharmaceutical com-
panies provide access to free medications
through patient assistance programs. If
rapid-acting insulin analogs are not op-
tions for those with FI who need insulin
therapy, a relatively low dose of an ultra-
long-acting insulin analog may be prescribed
simply to prevent marked hyperglycemia,
while recognizing that tight control may
not be possible in such cases. Providers
should also seek local resources that
might help patients with diabetes and
their family members to more regularly
obtain nutritious food (66).

Homelessness
Homelessness often accompanies many
additional barriers to diabetes self-
management, including FI, literacy and
numeracy deficiencies, lack of insurance,
cognitive dysfunction, and mental health
issues. Additionally, patients with dia-
betes who are homeless need secure places
to keep their diabetes supplies and re-
frigerator access to properly store their in-
sulin and take it on a regular schedule. Risk
for homelessness can be ascertained
using a brief risk assessment tool developed
and validated for use among veterans (67).

Given the potential challenges, providers
who care for homeless individuals should
be familiar with resources or have access to
social workers that can facilitate tem-
porary housing for their patients as a way
to improve diabetes care.

Language Barriers
Providers who care for non-English speak-
ers should develop or offer educational
programs and materials in multiple lan-
guages with the specific goals of prevent-
ing diabetes and building diabetes
awareness in people who cannot easily
read or write in English. The National Stan-
dards for Culturally and Linguistically Ap-
propriate Services in Health and Health
Care provide guidance on how health
care providers can reduce language bar-
riers by improving their cultural compe-
tency, addressing health literacy, and
ensuring communication with language
assistance (68). The site offers a number
of resources and materials that can be
used to improve the quality of care deliv-
ery to non-English–speaking patients.

Community Support
Identification or development of commu-
nity resources to support healthy life-
styles is a core element of the CCM (8).
Health care community linkages are receiv-
ing increasing attention from the American
Medical Association, the Agency for Health-
care Research and Quality, and others as a
means of promoting translation of clinical
recommendations for lifestyle modification
in real-world settings (69). Community
health workers (CHWs) (70), peer sup-
porters (71,72), and lay leaders (73) may
assist in the delivery of DSMES services
(61), particularly in underserved commu-
nities. A CHW is defined by the American
Public Health Association as a “frontline
public health worker who is a trusted
member of and/or has an unusually close
understanding of the community served”
(74). CHWs can be part of a cost-effective,
evidence-based strategy to improve the
management of diabetes and cardiovas-
cular risk factors in underserved commu-
nities and health care systems (75).

References
1. Kindig D, Stoddart G. What is population
2. Institute of Medicine Committee on Quality
of Healthcare in America. Crossing the quality chasm:
a new health system for the 21st century [Inter-
net], 2001. Washington, DC, The National Academe-
ics Press. Available from http://www.nap.edu/
3. Ali MK, Bullard KM, Saadidine JB, Cowie CC,
Imperatore G, Gregg EW. Achievement of goals
2013;368:1613–1621.
and recent progress in blood pressure levels
among U.S. adults with diagnosed diabetes,
5. Kerr EA, Heisler M, Krein SL, et al. Beyond co-
morbidity counts: how do comorbidity type and
severity influence diabetes patients’ treatment
priorities and self-management? J Gen Intern
Language barriers, physician-patient language
concordance, and glycemic control among in-
sured Latinos with diabetes: the Diabetes Study
of Northern California (DISTANCE). J Gen Intern
Med 2011;26:170–176
7. TRIAD Study Group. Health systems, patients
factors, and quality of care for diabetes: a synthesis
of findings from the TRIAD study. Diabetes Care
2010;33:940–947
8. Stellefson M, Dipnarine K, Stopka C. The Chronic
Care Model and diabetes management in US primary
care settings: a systematic review. Prev Chronic
Dis 2013;10:E26
9. Coleman K, Austin BT, Brach C, Wagner EH.
Evidence on the Chronic Care Model in the new
milennium. Health Aff (Millwood) 2009;28:75–85
10. Piatt GA, Anderson RM, Brooks MM, et al. 3-
year follow-up of clinical and behavioral improve-
ments following a multifaceted diabetes care interven-
tion: results of a randomized controlled
diabetes Edu 2010;36:301–309
ative care for patients with depression and chronic
12. Parchman ML, Zeber JE, Romero RR, Pugh JA.
Risk of coronary artery disease in type 2 diabetes
and the delivery of care consistent with the
chronic care model in primary care settings:
a STARNet study. Med Care 2007;45:1129–1134
13. Tricco AC, Ivers NM, Grimshaw JM, et al. Ef-
ficacy of quality improvement strategies on
the management of diabetes: a systematic review
14. Schmittdel JA, Gopalan A, Lin MW, Banerjee
S, Chau CV, Adams AS. Population health manage-
ment for diabetes: healthcare system-level ap-
proaches for improving quality and addressing
disparities. Curr Diab Rep 2017;17:31
15. Saadidine JB, Cadwell B, Gregg EW, et al. Im-
provements in diabetes processes of care and in-
Ann Intern Med 2006;144:465–474
16. O’Connor PJ, Bodkin NL, Fradkin J, et al. Di-
babetes performance measures: current status and
future directions. Diabetes Care 2011;34:1651–1659
17. Jaffe MG, Lee GA, Young JD, Sidney S, Go AS.
Improved blood pressure control associated
with a large-scale hypertension program. JAMA
2013;310:699–705
18. Pelkes D, Chen A, Shore J, Brown R. Effects of
care coordination on hospitalization, quality of
care, and health care expenditures among Medi-
care beneficiaries: 15 randomized trials. JAMA
2009;301:603–618
Steiner JF. Standardizing terminology and defini-
tions of medication adherence and persistence in
research employing electronic databases. Med
Care 2013;51(Suppl 3):S11–S21

2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2018

The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

CLASSIFICATION

Diabetes can be classified into the following general categories:

1. Type 1 diabetes (due to autoimmune β-cell destruction, usually leading to absolute insulin deficiency)
2. Type 2 diabetes (due to a progressive loss of β-cell insulin secretion frequently on the background of insulin resistance)
3. Gestational diabetes mellitus (GDM) (diabetes diagnosed in the second or third trimester of pregnancy that was not clearly overt diabetes prior to gestation)
4. Specific types of diabetes due to other causes, e.g., monogenic diabetes syndromes (such as neonatal diabetes and maturity-onset diabetes of the young [MODY]), diseases of the exocrine pancreas (such as cystic fibrosis and pancreatitis), and drug- or chemical-induced diabetes (such as with glucocorticoid use, in the treatment of HIV/AIDS, or after organ transplantation)

This section reviews most common forms of diabetes but is not comprehensive. For additional information, see the American Diabetes Association (ADA) position statement “Diagnosis and Classification of Diabetes Mellitus” (1).

Type 1 diabetes and type 2 diabetes are heterogeneous diseases in which clinical presentation and disease progression may vary considerably. Classification is important for determining therapy, but some individuals cannot be clearly classified as having type 1 or type 2 diabetes at the time of diagnosis. The traditional paradigms of type 2 diabetes occurring only in adults and type 1 diabetes only in children are no longer accurate, as both diseases occur in both age-groups. Children with type 1 diabetes typically present with the hallmark symptoms of polyuria/polydipsia, and approximately one-third present with diabetic ketoacidosis (DKA) (2). The onset of type 1 diabetes may be more variable in adults, and they may not present with the classic symptoms seen in children. Occasionally, patients with type 2 diabetes may present with DKA, particularly ethnic minorities (3). Although difficulties in distinguishing
diabetes type may occur in all age-groups at onset, the true diagnosis becomes more obvious over time.

In both type 1 and type 2 diabetes, various genetic and environmental factors can result in the progressive loss of β-cell mass and/or function that manifests clinically as hyperglycemia. Once hyperglycemia occurs, patients with all forms of diabetes are at risk for developing the same chronic complications, although rates of progression may differ. The identification of individualized therapies for diabetes in the future will require better characteristic of the many paths to β-cell demise or dysfunction (4).

Characterization of the underlying pathophysiology is more developed in type 1 diabetes than in type 2 diabetes. It is now clear from studies of first-degree relatives of patients with type 1 diabetes that the persistent presence of two or more autoantibodies is an almost certain predictor of clinical hyperglycemia and diabetes. The rate of progression is dependent on the age at first detection of antibody, number of antibodies, antibody specificity, and antibody titer. Glucose and A1C levels rise well before the clinical onset of diabetes, making diagnosis feasible well before the onset of DKA. Three distinct stages of type 1 diabetes can be identified (Table 2.1) and serve as a framework for future research and regulatory decision-making (4,5).

The path to β-cell demise and dysfunction are less well defined in type 2 diabetes, but deficient β-cell insulin secretion, frequently in the setting of insulin resistance, appears to be the common denominator. Characterization of subtypes of this heterogeneous disorder have been developed and validated in Scandinavian and Northern European populations but have not been confirmed in other ethnic and racial groups. Type 2 diabetes is primarily associated with insulin secretory defects related to inflammation and metabolic stress among other contributors, including genetic factors. Future classification schemes for diabetes will likely focus on the pathophysiology of the underlying β-cell dysfunction and the stage of disease as indicated by glucose status (normal, impaired, or diabetes) (4).

Diagnostic Tests for Diabetes

Diabetes may be diagnosed based on plasma glucose criteria, either the fasting plasma glucose (FPG) or the 2-h plasma glucose (2-h PG) value during a 75-g oral glucose tolerance test (OGTT), or A1C criteria (6) (Table 2.2).

Generally, FPG, 2-h PG during 75-g OGTT, and A1C are equally appropriate for diagnostic testing. It should be noted that the tests do not necessarily detect diabetes in the same individuals. The efficacy of interventions for primary prevention of type 2 diabetes (7,8) has primarily been demonstrated among individuals who have impaired glucose tolerance (IGT) with or without elevated fasting glucose, not for individuals with isolated impaired fasting glucose (IFG) or for those with prediabetes defined by A1C criteria.

The same tests may be used to screen for and diagnose diabetes and to detect individuals with prediabetes. Diabetes may be identified anywhere along the spectrum of clinical scenarios: in seemingly low-risk individuals who happen to have glucose testing, in individuals tested based on diabetes risk assessment, and in symptomatic patients.

Fasting and 2-Hour Plasma Glucose

The FPG and 2-h PG may be used to diagnose diabetes (Table 2.2). The concordance between the FPG and 2-h PG tests is imperfect, as is the concordance between A1C and either glucose-based test. Numerous studies have confirmed that compared with FPG and A1C cut points, the 2-h PG value diagnoses more people with diabetes.

A1C

Recommendations

- To avoid misdiagnosis or missed diagnosis, the A1C test should be performed using a method that is certified by the NGSP and standardized to the Diabetes Control and Complications Trial (DCCT) reference assay. B
- Marked discordance between measured A1C and plasma glucose levels should raise the possibility of A1C assay interference due to hemoglobin variants (i.e., hemoglobinopathies) and consideration of using an assay without interference or plasma blood glucose criteria to diagnose diabetes. B
- In conditions associated with increased red blood cell turnover, such as sickle cell disease, pregnancy (second and third trimesters), hemodialysis, recent blood loss or transfusion, or erythropoietin therapy, only plasma blood glucose criteria should be used to diagnose diabetes. B

The A1C test should be performed using a method that is certified by the NGSP (www.ngsp.org) and standardized or traceable to the Diabetes Control and Complications Trial (DCCT) reference assay. Although point-of-care A1C assays may be NGSP certified, proficiency testing is not mandated for performing the test, so use of point-of-care assays for diagnostic purposes is not recommended but may be considered in the future if proficiency testing is performed, documented, and deemed acceptable.

The A1C has several advantages compared with the FPG and OGTT, including greater convenience (fasting not required),

Table 2.1—Staging of type 1 diabetes (4,5)

<table>
<thead>
<tr>
<th>Stages</th>
<th>Characteristics</th>
<th>Diagnostic criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>Autoimmunity</td>
<td>Multiple autoantibodies</td>
</tr>
<tr>
<td></td>
<td>Normoglycemia</td>
<td>No IGT or IFG</td>
</tr>
<tr>
<td></td>
<td>Presymptomatic</td>
<td></td>
</tr>
<tr>
<td>Stage 2</td>
<td>Autoimmunity</td>
<td>Multiple autoantibodies</td>
</tr>
<tr>
<td></td>
<td>Dysglycemia</td>
<td>Dysglycemia: IFG and/or IGT</td>
</tr>
<tr>
<td></td>
<td>Presymptomatic</td>
<td>FPG 100–125 mg/dL (5.6–6.9 mmol/L)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-h PG 140–199 mg/dL (7.8–11.0 mmol/L)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A1C 5.7–6.4% (39–47 mmol/mol) or ≥10% increase in A1C</td>
</tr>
<tr>
<td>Stage 3</td>
<td>New-onset hyperglycemia</td>
<td>Clinical symptoms</td>
</tr>
<tr>
<td></td>
<td>Symptomatic</td>
<td>Diabetes by standard criteria</td>
</tr>
</tbody>
</table>
greater preanalytical stability, and less day-to-day perturbations during stress and illness. However, these advantages may be offset by the lower sensitivity of A1C at the designated cut point, greater cost, limited availability of A1C testing in certain regions of the developing world, and the imperfect correlation between A1C and average glucose in certain individuals. National Health and Nutrition Examination Survey (NHANES) data indicate that an A1C cut point of ≥6.5% (48 mmol/mol) identifies a prevalence of undiagnosed diabetes that is one-third of that using glucose criteria (9).

When using A1C to diagnose diabetes, it is important to recognize that A1C is an indirect measure of average blood glucose levels and to take other factors into consideration that may impact hemoglobin glycation independently of glycemia including age, race/ethnicity, and anemia/hemoglobinopathies.

Age

The epidemiological studies that formed the basis for recommending A1C to diagnose diabetes included only adult populations. Therefore, it remains unclear whether A1C and the same A1C cut point should be used to diagnose diabetes in children and adolescents (see p. S20 SCREENING AND TESTING FOR TYPE 2 DIABETES AND PREDIABETES IN CHILDREN AND ADOLESCENTS for additional information) (9,10).

Race/Ethnicity/Hemoglobinopathies

Hemoglobin variants can interfere with the measurement of A1C, although most assays in use in the U.S. are unaffected by the most common variants. Marked discrepancies between measured A1C and plasma glucose levels should prompt consideration that the A1C assay may not be reliable for that individual. For patients with a hemoglobin variant but normal red blood cell turnover, such as those with the sickle cell trait, an A1C assay without interference from hemoglobin variants should be used. An updated list of A1C assays with interferences is available at www.ngsp.org/interf.asp.

African Americans heterozygous for the common hemoglobin variant HbS may have, for any given level of mean glycemia, lower A1C by about 0.3% than those without the trait (11). Another genetic variant, X-linked glucose-6-phosphate dehydrogenase G202A, carried by 11% of African Americans, was associated with a decrease in A1C of about 0.8% in hemizygous men and 0.7% in homozygous women compared with those without the variant (12).

Even in the absence of hemoglobin variants, A1C levels may vary with race/ethnicity independently of glycemia (13–15). For example, African Americans may have higher A1C levels than non-Hispanic whites with similar fasting and postglucose load glucose levels (16), and A1C levels may be higher for a given mean glucose concentration when measured with continuous glucose monitoring (17). Though conflicting data exists, African Americans may also have higher levels of fructosamine and glycated albumin and lower levels of 1,5-anhydroglucitol, suggesting that their glycemic burden (particularly postprandially) may be higher (18,19). The association of A1C with risk for complications appears to be similar in African Americans and non-Hispanic whites (20,21).

Red Blood Cell Turnover

In conditions associated with increased red blood cell turnover, such as sickle cell disease, pregnancy (second and third trimesters), hemodialysis, recent blood loss or transfusion, or erythropoietin therapy, only plasma blood glucose criteria should be used to diagnose diabetes (22).

Table 2.2—Criteria for the diagnosis of diabetes

<table>
<thead>
<tr>
<th>Fasting plasma glucose (FPG)</th>
<th>126 mg/dL (7.0 mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR</td>
<td>2-h PG ≥200 mg/dL</td>
</tr>
<tr>
<td>126 mg/dL (7.0 mmol/L)</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>A1C ≥6.5% (48 mmol/mol)</td>
</tr>
<tr>
<td>In a patient with classic symptoms of hyperglycemia or hyperglycemic crisis, a random plasma glucose ≥200 mg/dL (11.1 mmol/L).</td>
<td></td>
</tr>
</tbody>
</table>

*In the absence of unequivocal hyperglycemia, results should be confirmed by repeat testing.

Confirming the Diagnosis

Unless there is a clear clinical diagnosis (e.g., patient in a hyperglycemic crisis or with classic symptoms of hyperglycemia and a random plasma glucose ≥200 mg/dL [11.1 mmol/L]), a second test is required for confirmation. It is recommended that the same test be repeated or a different test be performed without delay using a new blood sample for confirmation. For example, if the A1C is 7.0% (53 mmol/mol) and a repeat result is 6.8% (51 mmol/mol), the diagnosis of diabetes is confirmed. If two different tests (such as A1C and FPG) are both above the diagnostic threshold, this also confirms the diagnosis. On the other hand, if a patient has discordant results from two different tests, then the test result that is above the diagnostic cut point should be repeated, with consideration of the possibility of A1C assay interference. The diagnosis is made on the basis of the confirmed test. For example, if a patient meets the diabetes criterion of the A1C (two results ≥6.5% [48 mmol/mol]) but not FPG (<126 mg/dL [7.0 mmol/L]), that person should nevertheless be considered to have diabetes.

Since all the tests have preanalytic and analytic variability, it is possible that an abnormal result (i.e., above the diagnostic threshold), when repeated, will produce a value below the diagnostic cut point. This scenario is likely for FPG and 2-h PG if the glucose samples remain at room temperature and are not centrifuged promptly. Because of the potential for preanalytic variability, it is critical that samples for plasma glucose be spun and separated immediately after they are drawn. If patients have test results near the margins of the diagnostic threshold, the health care provider should follow the patient closely and repeat the test in 3–6 months.

CATEGORIES OF INCREASED RISK FOR DIABETES (PREDIABETES)

Recommendations

- Screening for prediabetes and risk for future diabetes with an informal assessment of risk factors or validated tools should be considered in asymptomatic adults. B
- Testing for prediabetes and risk for future diabetes in asymptomatic people should be considered in adults of any age who are overweight or obese (BMI ≥25 kg/m²).

or ≥ 23 kg/m2 in Asian Americans) and who have one or more additional risk factors for diabetes (Table 2.3). B

- For all people, testing should begin at age 45 years. B
- If tests are normal, repeat testing carried out at a minimum of 3-year intervals is reasonable. C
- To test for prediabetes, fasting plasma glucose, 2-h plasma glucose during 75-g OGTT glucose tolerance test, and A1C are equally appropriate. B
- In patients with prediabetes, identify and, if appropriate, treat other cardiovascular disease risk factors. B
- Testing for prediabetes should be considered in children and adolescents who are overweight or obese (BMI >85th percentile for age and sex, weight for height >85th percentile, or weight >120% of ideal for height) and who have additional risk factors for diabetes (Table 2.5). E

Table 2.3—Criteria for testing for diabetes or prediabetes in asymptomatic adults

<table>
<thead>
<tr>
<th>Criteria for testing</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Testing should be considered in overweight or obese (BMI ≥ 25 kg/m2 or ≥ 23 kg/m2 in Asian Americans) adults who have one or more of the following risk factors:</td>
<td>- Plasma blood glucose rather than A1C should be used to diagnose the acute onset of type 1 diabetes in individuals with symptoms of hyperglycemia. E</td>
</tr>
<tr>
<td>- First-degree relative with diabetes</td>
<td>- Screening for type 1 diabetes with a panel of autoantibodies is currently recommended only in the setting of a research trial or in first-degree family members of a proband with type 1 diabetes. B</td>
</tr>
<tr>
<td>- High-risk race/ethnicity (e.g., African American, Latino, Native American, Asian American, Pacific Islander)</td>
<td>- Persistence of two or more autoantibodies predicts clinical diabetes and may serve as an indication for intervention in the setting of a clinical trial. B</td>
</tr>
<tr>
<td>- History of CVD</td>
<td></td>
</tr>
<tr>
<td>- Hypertension (≥ 140/90 mmHg or on therapy for hypertension)</td>
<td></td>
</tr>
<tr>
<td>- HDL cholesterol level <35 mg/dL (0.90 mmol/L) and/or triglyceride level >250 mg/dL (2.82 mmol/L)</td>
<td></td>
</tr>
<tr>
<td>- Women with polycystic ovary syndrome</td>
<td></td>
</tr>
<tr>
<td>- Physical inactivity</td>
<td></td>
</tr>
<tr>
<td>- Other clinical conditions associated with insulin resistance (e.g., severe obesity, acanthosis nigricans)</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.4 summarizes the categories of prediabetes and Table 2.3 the criteria for prediabetes testing. The ADA diabetes risk test is an additional option for screening (Fig. 2.1) (diabetes.org/socrisktest). For additional background regarding risk factors and screening for prediabetes, see pp. S19–S20 (SCREENING AND TESTING FOR TYPE 2 DIABETES AND PREDIABETES IN ASYMPTOMATIC ADULTS and SCREENING AND TESTING FOR TYPE 2 DIABETES AND PREDIABETES IN CHILDREN AND ADOLESCENTS).

Type 1 Diabetes

Recommendations

- Plasma blood glucose rather than A1C should be used to diagnose the acute onset of type 1 diabetes in individuals with symptoms of hyperglycemia. E
- Screening for type 1 diabetes with a panel of autoantibodies is currently recommended only in the setting of a research trial or in first-degree family members of a proband with type 1 diabetes. B
- Persistence of two or more autoantibodies predicts clinical diabetes and may serve as an indication for intervention in the setting of a clinical trial. B

Diagnosis

In a patient with classic symptoms, measurement of plasma glucose is sufficient to diagnose diabetes (symptoms
of hyperglycemia or hyperglycemic crisis plus a random plasma glucose $\geq 200 \text{ mg/dL} [11.1 \text{ mmol/L}]$. In these cases, knowing the plasma glucose level is critical because, in addition to confirming that symptoms are due to diabetes, it will inform management decisions. Some providers may also want to know the A1C to determine how long a patient has had hyperglycemia. The criteria to diagnose diabetes are listed in Table 2.2.

Immune-Mediated Diabetes

This form, previously called “insulin-dependent diabetes” or “juvenile-onset diabetes,” accounts for 5–10% of diabetes and is due to cellular-mediated autoimmune destruction of the pancreatic β-cells. Autoimmune markers include islet cell autoantibodies and autoantibodies to GAD (GAD65), insulin, the tyrosine phosphatases IA-2 and IA-2β, and ZnT8. Type 1 diabetes is defined by the presence of one or more of these autoimmune markers. The disease has strong HLA associations, with linkage to the DQA and DQB genes. These HLA-DR/DQ alleles can be either predisposing or protective.

The rate of β-cell destruction is quite variable, being rapid in some individuals (mainly infants and children) and slow in others (mainly adults). Children and adolescents may present with DKA as the first manifestation of the disease. Others have modest fasting hyperglycemia that can rapidly change to severe hyperglycemia and/or DKA with infection or other stress. Adults may retain sufficient β-cell function to prevent DKA for many years; such individuals eventually become dependent on insulin for survival and are at risk for DKA. At this latter stage of the disease, there is little or no insulin secretion, as manifested by low or undetectable levels of plasma C-peptide. Immune-mediated diabetes commonly occurs in childhood and adolescence, but it can occur at any age, even in the 8th and 9th decades of life.

Autoimmune destruction of β-cells has multiple genetic predispositions and is also related to environmental factors that are still poorly defined. Although patients are not typically obese when they present with type 1 diabetes, obesity should not preclude the diagnosis. Patients with type 1 diabetes are also prone to other autoimmune disorders such as Hashimoto thyroiditis, Graves disease, Addison disease, celiac disease, vitiligo, autoimmune hepatitis, myasthenia gravis, and pernicious anemia (see Section 3 “Comprehensive Medical Evaluation and Assessment of Comorbidities”).

Idiopathic Type 1 Diabetes

Some forms of type 1 diabetes have no known etiologies. These patients have permanent insulinopenia and are prone to DKA, but have no evidence of β-cell autoimmunity. Although only a minority of patients with type 1 diabetes fall into this category, of those who do, most are of African or Asian ancestry. Individuals with this form of diabetes suffer from episodic DKA and exhibit varying degrees of insulin deficiency between episodes. This form of diabetes is strongly inherited and is not HLA associated. An absolute requirement for insulin replacement therapy in affected patients may be intermittent.

Testing for Type 1 Diabetes Risk

The incidence and prevalence of type 1 diabetes is increasing (30). Patients with type 1 diabetes often present with acute symptoms of diabetes and markedly elevated blood glucose levels, and approximately one-third are diagnosed with life-threatening DKA (2). Several studies indicate that measuring islet autoantibodies in relatives of those with type 1 diabetes may identify individuals who are at risk for developing type 1 diabetes (5). Such testing, coupled with education about diabetes symptoms and close follow-up, may enable earlier identification of type 1 diabetes onset. A study reported the risk of progression to type 1 diabetes from the time of seroconversion to autoantibody positivity in three pediatric cohorts from Finland, Germany, and the U.S. Of the 585 children who developed more than two autoantibodies, nearly 70% developed type 1 diabetes within 10 years and 84% within 15 years (31). These findings are highly significant because while the German group was recruited from offspring of parents with type 1 diabetes, the Finnish and American groups were recruited from the general population. Remarkably, the findings in all three groups were the same, suggesting that the same sequence of events led to clinical disease in both “sporadic” and familial cases of type 1 diabetes. Indeed, the risk of type 1 diabetes increases as the number of relevant autoantibodies detected increases (32–34).

Although there is currently a lack of accepted screening programs, one should consider referring relatives of those with type 1 diabetes for antibody testing for risk assessment in the setting of a clinical research study (www.diabetestrialsnet.org). Widespread clinical testing of asymptomatic low-risk individuals is not currently recommended due to lack of approved therapeutic interventions. Individuals who test positive should be counseled about the risk of developing diabetes, diabetes symptoms, and DKA prevention. Numerous clinical studies are being conducted to test various methods of preventing type 1 diabetes in those with evidence of autoimmunity (www.clinicaltrials.gov).

TYPE 2 DIABETES

Recommendations

- Screening for type 2 diabetes with an informal assessment of risk factors or validated tools should be considered in asymptomatic adults. **B**
- Testing for type 2 diabetes in asymptomatic people should be considered in adults of any age who are overweight or obese (BMI ≥ 25 kg/m2 or ≥ 23 kg/m2 in Asian Americans) and who have one or more additional risk factors for diabetes (Table 2.3). **B**
- For all people, testing should begin at age 45 years. **B**
- If tests are normal, repeat testing carried out at a minimum of 3-year intervals is reasonable. **C**
- To test for type 2 diabetes, fasting plasma glucose, 2-h plasma glucose during 75-g oral glucose tolerance test, and A1C are equally appropriate. **B**
Diabetes Risk Test

1. How old are you?
 - Less than 40 years (0 points)
 - 40—49 years (1 point)
 - 50—59 years (2 points)
 - 60 years or older (3 points)

2. Are you a man or a woman?
 - Man (1 point)
 - Woman (0 points)

3. If you are a woman, have you ever been diagnosed with gestational diabetes?
 - Yes (1 point)
 - No (0 points)

4. Do you have a mother, father, sister, or brother with diabetes?
 - Yes (1 point)
 - No (0 points)

5. Have you ever been diagnosed with high blood pressure?
 - Yes (1 point)
 - No (0 points)

6. Are you physically active?
 - Yes (0 points)
 - No (1 point)

7. What is your weight status?
 (see chart at right)

Add up your score.

Height	Weight (lbs.)
4' 10" | 119-142 | 143-190 | 191+
4' 11" | 124-147 | 148-197 | 198+
5' 0" | 128-152 | 153-203 | 204+
5' 1" | 132-157 | 158-210 | 211+
5' 2" | 136-163 | 164-217 | 218+
5' 3" | 141-168 | 169-224 | 225+
5' 4" | 145-173 | 174-231 | 232+
5' 5" | 150-179 | 180-239 | 240+
5' 6" | 155-185 | 186-246 | 247+
5' 7" | 159-190 | 191-254 | 255+
5' 8" | 164-196 | 197-261 | 262+
5' 9" | 169-202 | 203-269 | 270+
5' 10" | 174-208 | 209-277 | 278+
5' 11" | 179-214 | 215-285 | 286+
6' 0" | 184-220 | 221-293 | 294+
6' 1" | 189-226 | 227-301 | 302+
6' 2" | 194-232 | 233-310 | 311+
6' 3" | 200-239 | 240-318 | 319+
6' 4" | 205-245 | 246-327 | 328+

(1 Point) (2 Points) (3 Points)

If you scored 5 or higher:
You are at increased risk for having type 2 diabetes. However, only your doctor can tell for sure if you do have type 2 diabetes or prediabetes (a condition that precedes type 2 diabetes in which blood glucose levels are higher than normal). Talk to your doctor to see if additional testing is needed.

Type 2 diabetes is more common in African Americans, Hispanics/Latinos, American Indians, and Asian Americans and Pacific Islanders.

Higher body weights increase diabetes risk for everyone. Asian Americans are at increased diabetes risk at lower body weights than the rest of the general public (about 15 pounds lower).

For more information, visit us at diabetes.org or call 1-800-DIABETES (1-800-342-2383)

Lower Your Risk
The good news is that you can manage your risk for type 2 diabetes. Simple steps make a big difference and can help you live a longer, healthier life. If you are at high risk, your first step is to see your doctor to see if additional testing is needed.
Visit diabetes.org or call 1-800-DIABETES (1-800-342-2383) for information, tips on getting started, and ideas for simple, small steps you can take to help lower your risk.

If you scored below 5:
You weigh less than the amount in the left column (0 points).

Figure 2.1—ADA risk test (diabetes.org/socrisktest).
In patients with diabetes, identify and treat other cardiovascular disease risk factors.

- Testing for type 2 diabetes should be considered in children and adolescents who are overweight or obese (BMI > 85th percentile for age and sex, weight for height > 85th percentile, or weight > 120% of ideal for height) and who have additional risk factors for diabetes (Table 2.5).

Description
Type 2 diabetes, previously referred to as “noninsulin-dependent diabetes” or “adult-onset diabetes,” accounts for 90–95% of all diabetes. This form encompasses individuals who have relative (rather than absolute) insulin deficiency and have peripheral insulin resistance. At least initially, and often throughout their lifetime, these individuals may not need insulin treatment to survive.

There are various causes of type 2 diabetes. Although the specific etiologies are not known, autoimmune destruction of β-cells does not occur and patients do not have any of the other known causes of diabetes. Most but not all patients with type 2 diabetes are overweight or obese. Excess weight itself causes some degree of insulin resistance. Patients who are not obese or overweight by traditional weight criteria may have an increased percentage of body fat distributed predominantly in the abdominal region.

DKA seldom occurs spontaneously in type 2 diabetes; when seen, it usually arises in association with the stress of another illness such as infection or with the use of certain drugs (e.g., corticosteroids, atypical antipsychotics, and sodium–glucose cotransporter 2 inhibitors) (35, 36). Type 2 diabetes frequently goes undiagnosed for many years because hyperglycemia develops gradually and, at earlier stages, is often not severe enough for the patient to notice the classic diabetes symptoms. Nevertheless, even undiagnosed patients are at increased risk of developing macrovascular and microvascular complications.

Whereas patients with type 2 diabetes may have insulin levels that appear normal or elevated, the higher blood glucose levels in these patients would be expected to result in even higher insulin values had their β-cell function been normal. Thus, insulin secretion is defective in these patients and insufficient to compensate for insulin resistance. Insulin resistance may improve with weight reduction and/or pharmacologic treatment of hyperglycemia but is seldom restored to normal.

The risk of developing type 2 diabetes increases with age, obesity, and lack of physical activity. It occurs more frequently in women with prior GDM, in those with hypertension or dyslipidemia, and in certain racial/ethnic subgroups (African American, American Indian, Hispanic/Latino, and Asian American). It is often associated with a strong genetic predisposition or family history in first-degree relatives, more so than type 1 diabetes. However, the genetics of type 2 diabetes is poorly understood. In adults without traditional risk factors for type 2 diabetes and/or younger age, consider antibody testing to exclude the diagnosis of type 1 diabetes (i.e., GAD).

Screening and Testing for Type 2 Diabetes and Prediabetes in Asymptomatic Adults
Screening for prediabetes and type 2 diabetes through an informal assessment of risk factors (Table 2.3) or with an assessment tool, such as the ADA risk test (Fig. 2.1) (diabetes.org/socrisktest), is recommended to guide providers on whether performing a diagnostic test (Table 2.2) is appropriate. Prediabetes and type 2 diabetes meet criteria for conditions in which early detection is appropriate. Both conditions are common and impose significant clinical and public health burdens. There is often a long pre-symptomatic phase before the diagnosis of type 2 diabetes. Simple tests to detect preclinical disease are readily available.

The duration of glycemic burden is a strong predictor of adverse outcomes. There are effective interventions that prevent progression from prediabetes to diabetes (see Section 5 “Prevention or Delay of Type 2 Diabetes”) and reduce the risk of diabetes complications (see Section 9 “Cardiovascular Disease and Risk Management” and Section 10 “Microvascular Complications and Foot Care”).

Approximately one-quarter of people with diabetes in the U.S. and nearly half of Asian and Hispanic Americans with diabetes are undiagnosed (37,38). Although screening of asymptomatic individuals to identify those with prediabetes or diabetes might seem reasonable, rigorous clinical trials to prove the effectiveness of such screening have not been conducted and are unlikely to occur.

A large European randomized controlled trial compared the impact of screening for diabetes and intensive multifactorial intervention with that of screening and routine care (39). General practice patients between the ages of 40 and 69 years were screened for diabetes and randomly assigned by practice to intensive treatment of multiple risk factors or routine diabetes care. After 5.3 years of follow-up, CVD risk factors were modestly but significantly improved with intensive treatment compared with routine care, but the incidence of first CVD events or mortality was not significantly different between the groups (39). The excellent care provided to patients in the routine care group and the lack of an unscreened control arm limited the authors’ ability to determine whether screening and early treatment improved outcomes compared with no screening and later treatment after clinical diagnoses. Computer simulation modeling studies suggest that major benefits are likely to accrue from the early diagnosis and treatment of hyperglycemia and

Table 2.5—Risk-based screening for type 2 diabetes or prediabetes in asymptomatic children and adolescents in a clinical setting*

<table>
<thead>
<tr>
<th>Criteria</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Overweight (BMI > 85th percentile for age and sex, weight for height > 85th percentile, or weight > 120% of ideal for height)</td>
<td>A</td>
</tr>
<tr>
<td>• Maternal history of diabetes or GDM during the child’s gestation</td>
<td>A</td>
</tr>
<tr>
<td>• Family history of type 2 diabetes in first- or second-degree relative</td>
<td>A</td>
</tr>
<tr>
<td>• Race/ethnicity (Native American, African American, Latino, Asian American, Pacific Islander)</td>
<td>A</td>
</tr>
<tr>
<td>• Signs of insulin resistance or conditions associated with insulin resistance (acanthosis nigricans, hypertension, dyslipidemia, polycystic ovary syndrome, or small-for-gestational-age birth weight)</td>
<td>B</td>
</tr>
</tbody>
</table>

*Persons aged < 18 years.
cardiovascular risk factors in type 2 diabetes (40); moreover, screening, beginning at age 30 or 45 years and independent of risk factors, may be cost-effective (<$11,000 per quality-adjusted life-year gained) (41).

Additional considerations regarding testing for type 2 diabetes and prediabetes in asymptomatic patients include the following.

Age
Age is a major risk factor for diabetes. Testing should begin at age 45 years for all patients. Screening should be considered in overweight or obese adults of any age with one or more risk factors for diabetes.

BMI and Ethnicity
In general, BMI ≥25 kg/m² is a risk factor for diabetes. However, data suggest that the BMI cut point should be lower for the Asian American population (42,43). The BMI cut points fall consistently between 23 and 24 kg/m² (sensitivity of 80%) for nearly all Asian American subgroups (with levels slightly lower for Japanese Americans). This makes a rounded cut point of 23 kg/m² practical. An argument can be made to push the BMI cut point to lower than 23 kg/m² in favor of increased sensitivity; however, this would lead to an unacceptably low specificity (13.1%). Data from the WHO also suggest that a BMI of ≥23 kg/m² should be used to define increased risk in Asian Americans (44). The finding that half of diabetes in Asian Americans is undiagnosed suggests that testing is not occurring at lower BMI thresholds (37,38).

Evidence also suggests that other populations may benefit from lower BMI cut points. For example, in a large multiethnic cohort study, for an equivalent incidence rate of diabetes, a BMI of 30 kg/m² in non-Hispanic whites was equivalent to a BMI of 26 kg/m² in African Americans (45).

Medications
Certain medications, such as glucocorticoids, thiazide diuretics, and atypical antipsychotics (46), are known to increase the risk of diabetes and should be considered when deciding whether to screen.

Testing Interval
The appropriate interval between screening tests is not known (47). The rationale for the 3-year interval is that with this interval, the number of false-positive tests that require confirmatory testing will be reduced and individuals with false-negative tests will be retested before substantial time elapses and complications develop (47).

Community Screening
Ideally, testing should be carried out within a health care setting because of the need for follow-up and treatment. Community screening outside a health care setting is generally not recommended because people with positive tests may not seek, or have access to, appropriate follow-up testing and care. However, in specific situations where an adequate referral system is established beforehand for positive tests, community screening may be considered. Community testing may also be poorly targeted; i.e., it may fail to reach the groups most at risk and inappropriately test those at very low risk or even those who have already been diagnosed (48).

Screening in Dental Practices
Because periodontal disease is associated with diabetes, the utility of screening in a dental setting and referral to primary care as a means to improve the diagnosis of prediabetes and diabetes has been explored (49–51), with one study estimating that 30% of patients ≥30 years of age seen in general dental practices had dysglycemia (51). Further research is needed to demonstrate the feasibility, effectiveness, and cost-effectiveness of screening in this setting.

Screening and Testing for Type 2 Diabetes and Prediabetes in Children and Adolescents
In the last decade, the incidence and prevalence of type 2 diabetes in adolescents has increased dramatically, especially in racial and ethnic minority populations (30). See Table 2.5 for recommendations on risk-based screening for type 2 diabetes or prediabetes in asymptomatic children and adolescents in a clinical setting. See Section 12 “Children and Adolescents” for additional information on type 2 diabetes in children and adolescents.

Some studies question the validity of A1C in the pediatric population, especially among certain ethnicities, and suggest OGTT or FPG as more suitable diagnostic tests (52). However, many of these studies do not recognize that diabetes diagnostic criteria are based on long-term health outcomes, and validations are not currently available in the pediatric population (53). The ADA acknowledges the limited data supporting A1C for diagnosing type 2 diabetes in children and adolescents. Although A1C is not recommended for diagnosis of diabetes in children with cystic fibrosis or symptoms suggestive of acute onset of type 1 diabetes and only A1C assays without interference are appropriate for children with hemoglobinopathies, the ADA continues to recommend A1C for diagnosis of type 2 diabetes in this cohort (54,55).

GESTATIONAL DIABETES MELLITUS

Recommendations
- Test for undiagnosed diabetes at the first prenatal visit in those with risk factors, using standard diagnostic criteria. B
- Test for gestational diabetes mellitus at 24–28 weeks of gestation in pregnant women not previously known to have diabetes. A
- Test women with gestational diabetes mellitus for persistent diabetes at 4–12 weeks postpartum, using the oral glucose tolerance test and clinically appropriate nonpregnancy diagnostic criteria. E
- Women with a history of gestational diabetes mellitus should have lifelong screening for the development of diabetes or prediabetes at least every 3 years. B
- Women with a history of gestational diabetes mellitus found to have prediabetes should receive intensive lifestyle interventions or metformin to prevent diabetes. A

Definition
For many years, GDM was defined as any degree of glucose intolerance that was first recognized during pregnancy (23), regardless of whether the condition may have predated the pregnancy or persisted after the pregnancy. This definition facilitated a uniform strategy for detection and classification of GDM, but it was limited by imprecision.

The ongoing epidemic of obesity and diabetes has led to more type 2 diabetes in women of childbearing age, with an increase in the number of pregnant women with undiagnosed type 2 diabetes (56). Because of the number of pregnant women with undiagnosed type 2 diabetes, it is reasonable to test women with risk factors for type 2 diabetes (Table 2.3) at their initial prenatal visit, using standard
diagnostic criteria (Table 2.2). Women diagnosed with diabetes by standard diagnostic criteria in the first trimester should be classified as having preexisting pregestational diabetes (type 2 diabetes or, very rarely, type 1 diabetes or monogenic diabetes). GDM is diabetes that is first diagnosed in the second or third trimester of pregnancy that is not clearly either preexisting type 1 or type 2 diabetes (see Section 13 “Management of Diabetes in Pregnancy”). The International Association of the Diabetes and Pregnancy Study Groups (IADPSG) diagnostic criteria for the 75-g OGTT as well as the GDM screening and diagnostic criteria used in the two-step approach were not derived from data in the first half of pregnancy, so the diagnosis of GDM in early pregnancy by either FPG or OGTT values is not evidence based (57).

Because GDM confers increased risk for the development of type 2 diabetes after delivery (58,59) and because effective prevention interventions are available (60,61), women diagnosed with GDM should receive lifelong screening for prediabetes and type 2 diabetes.

Diagnosis

GDM carries risks for the mother and neonate. Not all adverse outcomes are of equal clinical importance. The Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study (62), a large-scale multinational cohort study completed by more than 23,000 pregnant women, demonstrated that risk of adverse maternal, fetal, and neonatal outcomes continuously increased as a function of maternal glycemia at 24–28 weeks of gestation, even within ranges previously considered normal for pregnancy. For most complications, there was no threshold for risk. These results have led to careful reconsideration of the diagnostic criteria for GDM. GDM diagnosis (Table 2.6) can be accomplished with either of two strategies:

1. “One-step” 75-g OGTT or
2. “Two-step” approach with a 50-g (nonfasting) screen followed by a 100-g OGTT for those who screen positive

Different diagnostic criteria will identify different degrees of maternal hyperglycemia and maternal/fetal risk, leading some experts to debate, and disagree on, optimal strategies for the diagnosis of GDM.

One-Step Strategy

The IADPSG defined diagnostic cut points for GDM as the average fasting, 1-h, and 2-h PG values during a 75-g OGTT in women at 24–28 weeks of gestation who participated in the HAPO study at which odds for adverse outcomes reached 1.75 times the estimated odds of these outcomes at the mean fasting, 1-h, and 2-h PG levels of the study population. This one-step strategy was anticipated to significantly increase the incidence of GDM (from 5–6% to 15–20%), primarily because only one abnormal value, not two, became sufficient to make the diagnosis (63). The anticipated increase in the incidence of GDM could have a substantial impact on costs and medical infrastructure needs and has the potential to “medicalize” pregnancies previously categorized as normal. Nevertheless, the ADA recommends these diagnostic criteria with the intent of optimizing gestational outcomes because these criteria were the only ones based on pregnancy outcomes rather than end points such as prediction of subsequent maternal diabetes.

The expected benefits to the offspring are inferred from intervention trials that focused on women with lower levels of hyperglycemia than identified using older GDM diagnostic criteria. Those trials found modest benefits including reduced rates of large-for-gestational-age births and preeclampsia (64,65). It is important to note that 80–90% of women being treated for mild GDM in two randomized controlled trials could be managed with lifestyle therapy alone. The OGTT glucose cutoffs in these two trials overlapped with the thresholds recommended by the IADPSG, and in one trial (65), the 2-h PG threshold (140 mg/dL [7.8 mmol/L]) was lower than the cutoff recommended by the IADPSG (153 mg/dL [8.5 mmol/L]). No randomized controlled trials of identifying and treating GDM using the IADPSG criteria versus older criteria have been published to date. Data are also lacking on how the treatment of lower levels of hyperglycemia affects a mother’s future risk for the development of type 2 diabetes and her offspring’s risk for obesity, diabetes, and other metabolic disorders. Additional well-designed clinical studies are needed to determine the optimal intensity of monitoring and treatment of women with GDM diagnosed by the one-step strategy (66,67).

Two-Step Strategy

In 2013, the National Institutes of Health (NIH) convened a consensus development conference to consider diagnostic criteria for diagnosing GDM (68). The 15-member panel had representatives from obstetrics/gynecology, maternal-fetal medicine, pediatrics, diabetes research, biostatistics, and other related fields. The panel recommended a two-step approach to screening that used a 1-h 50-g glucose load test (GLT) followed by a 3-h 100-g OGTT for those who screened positive. The American College of Obstetricians and Gynecologists (ACOG) recommends any of the commonly used thresholds of 130, 135, or 140 mg/dL for the 1-h 50-g GLT (69). A systematic review for the U.S. Preventive Services Task Force compared GLT cutoffs of 130 mg/dL (7.2 mmol/L) and 140 mg/dL (7.8 mmol/L) (70). The higher cutoff yielded sensitivity of 70–88% and specificity of 69–89%, while the lower cutoff was 88–99% sensitive and 66–77% specific. Data regarding a cutoff of 135 mg/dL are limited. As for other screening tests, choice of a cutoff is based upon the trade-off between sensitivity and specificity. The use of A1C at 24–28 weeks of gestation as a screening test for GDM does not function as well as the GLT (71).

Key factors cited by the NIH panel in their decision-making process were the lack of clinical trial data demonstrating the benefits of the one-step strategy and the potential negative consequences of identifying a large group of women with GDM, including medicalization of pregnancy with increased health care utilization and costs. Moreover, screening with a 50-g GLT does not require fasting and is therefore easier to accomplish for many women. Treatment of higher-threshold maternal hyperglycemia, as identified by the two-step approach, reduces rates of neonatal macrosomia, large-for-gestational-age births (72), and shoulder dystocia, without increasing small-for-gestational-age births. ACOG currently supports the two-step approach (69) but most recently noted that one elevated value, as opposed to two, may be used for the diagnosis of GDM. If this approach is implemented, the incidence of GDM by the two-step strategy will likely increase markedly. ACOG recommends either of two sets of diagnostic thresholds for the 3-h 100-g OGTT (73,74). Each is based on different mathematical conversions of the original recommended thresholds,
which used whole blood and nonenzymatic methods for glucose determination. A recent secondary analysis of data from a randomized clinical trial of identification and treatment of mild GDM (75) demonstrated that treatment was similarly beneficial in patients meeting only the lower thresholds (73) and in those meeting only the higher thresholds (74). If the two-step approach is used, it would appear advantageous to use the lower diagnostic thresholds as shown in step 2 in Table 2.6.

Future Considerations

The conflicting recommendations from expert groups underscore the fact that there are data to support each strategy. A cost-benefit estimation comparing the two strategies concluded that the one-step approach is cost-effective only if patients with GDM receive postdelivery counseling and care to prevent type 2 diabetes (76). The decision of which strategy to implement must therefore be made based on the relative values placed on factors that have yet to be measured (e.g., willingness to change practice based on correlation studies rather than intervention trial results, available infrastructure, and importance of cost considerations).

As the IADPSG criteria (“one-step strategy”) have been adopted internationally, further evidence has emerged to support improved pregnancy outcomes with cost savings (77) and may be the preferred approach. Data comparing population-wide outcomes with one-step versus two-step approaches have been inconsistent to date (78,79). In addition, pregnancies complicated by GDM per the IADPSG criteria, but not recognized as such, have comparable outcomes to pregnancies diagnosed as GDM by the more stringent two-step criteria (80,81). There remains strong consensus that establishing a uniform approach to diagnosing GDM will benefit patients, caregivers, and policy makers. Longer-term outcome studies are currently under way.

Table 2.6—Screening for and diagnosis of GDM

One-step strategy
- Perform a 75-g OGTT, with plasma glucose measurement when patient is fasting and at 1 and 2 h, at 24–28 weeks of gestation in women not previously diagnosed with overt diabetes.
- The OGTT should be performed in the morning after an overnight fast of at least 8 h.
- The diagnosis of GDM is made when any of the following plasma glucose values are met or exceeded:
 - Fasting: 92 mg/dL (5.1 mmol/L)
 - 1 h: 180 mg/dL (10.0 mmol/L)
 - 2 h: 153 mg/dL (8.5 mmol/L)

Two-step strategy

Step 1: Perform a 50-g GLT (nonfasting), with plasma glucose measurement at 1 h, at 24–28 weeks of gestation in women not previously diagnosed with overt diabetes.
- If the plasma glucose level measured 1 h after the load is ≥130 mg/dL, 135 mg/dL, or 140 mg/dL (7.2 mmol/L, 7.5 mmol/L, or 7.8 mmol/L), proceed to a 100-g OGTT.

Step 2: The 100-g OGTT should be performed when the patient is fasting.
- The diagnosis of GDM is made if at least two* of the following four plasma glucose levels (measured fasting and 1 h, 2 h, 3 h during OGTT) are met or exceeded:
 - Fasting: 95 mg/dL (5.3 mmol/L)
 - 1 h: 180 mg/dL (10.0 mmol/L)
 - 2 h: 155 mg/dL (8.6 mmol/L)
 - 3 h: 140 mg/dL (7.8 mmol/L)

Monogenic defects that cause β-cell dysfunction, such as neonatal diabetes and MODY, represent a small fraction of patients with diabetes (<5%). Table 2.7 describes the most common causes of monogenic diabetes. For a comprehensive list of causes, see Genetic Diagnosis of Endocrine Disorders (82).

Table 2.7

<table>
<thead>
<tr>
<th>Carpentier-Coustan (73)</th>
<th>NDDG (74)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fasting: 95 mg/dL (5.3 mmol/L)</td>
<td>105 mg/dL (5.8 mmol/L)</td>
</tr>
<tr>
<td>1 h: 180 mg/dL (10.0 mmol/L)</td>
<td>190 mg/dL (10.6 mmol/L)</td>
</tr>
<tr>
<td>2 h: 155 mg/dL (8.6 mmol/L)</td>
<td>165 mg/dL (9.2 mmol/L)</td>
</tr>
<tr>
<td>3 h: 140 mg/dL (7.8 mmol/L)</td>
<td>145 mg/dL (8.0 mmol/L)</td>
</tr>
</tbody>
</table>

NDDG, National Diabetes Data Group. *ACOG recently noted that alternatively one elevated value can be used for diagnosis.

MONOC Vent Diabetic OSYN RHOSES

- All children diagnosed with diabetes in the first 6 months of life should have immediate genetic testing for neonatal diabetes. **A**
- Children and adults, diagnosed in early adulthood, who have diabetes not characteristic of type 1 or type 2 diabetes that occurs in successive generations (suggestive of an autosomal dominant pattern of inheritance) should have genetic testing for maturity-onset diabetes of the young. **A**
- In both instances, consultation with a center specializing in diabetes genetics is recommended to understand the significance of these mutations and how best to approach further evaluation, treatment, and genetic counseling. **E**

Neonatal Diabetes

Diabetes occurring under 6 months of age is termed “neonatal” or “congenital” diabetes, and about 80–85% of cases can be found to have an underlying monogenic cause (83). Neonatal diabetes occurs much less often after 6 months of age, whereas autoimmune type 1 diabetes rarely occurs before 6 months of age. Neonatal diabetes can either be transient or permanent. Transient diabetes is most often due to overexpression of genes on chromosome 6q24, is recurrent in about half of cases, and may be treatable with medications other than insulin. Permanent neonatal diabetes is most commonly due to autosomal dominant mutations in the genes encoding the Kir6.2 subunit (KCNJ11) and SUR1 subunit (ABCC8) of the β-cell KATP channel. Correct diagnosis has critical implications because most patients with KATP-related neonatal diabetes will exhibit improved glycemic control when treated with high-dose oral...
sulfonylureas instead of insulin. Insulin gene (INS) mutations are the second most common cause of permanent neonatal diabetes, and, while treatment presently is intensive insulin management, there are important genetic considerations, as most of the mutations that cause diabetes are dominantly inherited.

Maturity-Onset Diabetes of the Young

MODY is frequently characterized by onset of hyperglycemia at an early age (classically before age 25 years, although diagnosis may appear at older ages). MODY is characterized by impaired insulin secretion with minimal or no defects in insulin action (in the absence of coexistent obesity). It is inherited in an autosomal dominant pattern with abnormalities in at least 13 genes on different chromosomes identified to date. The most commonly reported forms are GCK-MODY (MODY2), HNF1A-MODY (MODY3), and HNF4A-MODY (MODY1).

Clinically, patients with GCK-MODY exhibit mild, stable, fasting hyperglycemia and do not require antihyperglycemic therapy except sometimes during pregnancy. Patients with HNF1A- or HNF4A-MODY usually respond well to low doses of sulfonylureas, which are considered first-line therapy. Mutations or deletions in HNF1B are associated with renal cysts and uterine malformations (renal cysts and diabetes [RCAD] syndrome). Other extremely rare forms of MODY have been reported to involve other transcription factor genes including PDX1 (IPF1) and NEUROD1.

Diagnosis

A diagnosis of one of the three most common forms of MODY including GCK-MODY, HNF1A-MODY, and HNF4A-MODY allows for more cost-effective therapy (no therapy for GCK-MODY; sulfonylureas as first-line therapy for HNF1A-MODY and HNF4A-MODY). Additionally, diagnosis can lead to identification of other affected family members.

A diagnosis of MODY should be considered in individuals who have atypical diabetes and multiple family members with diabetes not characteristic of type 1 or type 2 diabetes, although admittedly “atypical diabetes” is becoming increasingly difficult to precisely define in the absence of a definitive set of tests for either type of diabetes. In most cases, the presence of autoantibodies for type 1 diabetes precludes further testing for monogenic diabetes, but the presence of autoantibodies in patients with monogenic diabetes has been reported (84). Individuals in whom monogenic diabetes is suspected should be referred to a specialist for further evaluation if available, and consultation is

Table 2.7—Most common causes of monogenic diabetes (82)

<table>
<thead>
<tr>
<th>Gene</th>
<th>Inheritance</th>
<th>Clinical features</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GCK</td>
<td>AD</td>
<td>GCK-MODY: stable, nonprogressive elevated fasting blood glucose; typically does not require treatment; microvascular complications are rare; small rise in 2-h PG level on OGTT (<54 mg/dl [3 mmol/L])</td>
</tr>
<tr>
<td>HNF1A</td>
<td>AD</td>
<td>HNF1A-MODY: progressive insulin secretory defect with presentation in adolescence or early adulthood; lowered renal threshold for glucosuria; large rise in 2-h PG level on OGTT (>90 mg/dl [5 mmol/L]; sensitive to sulfonylureas</td>
</tr>
<tr>
<td>HNF4A</td>
<td>AD</td>
<td>HNF4A-MODY: progressive insulin secretory defect with presentation in adolescence or early adulthood; may have large birth weight and transient neonatal hypoglycemia; sensitive to sulfonylureas</td>
</tr>
<tr>
<td>HNF1B</td>
<td>AD</td>
<td>HNF1B-MODY: developmental renal disease (typically cystic); genitourinary abnormalities; atrophy of the pancreas; hyperuricemia; gout</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neonatal diabetes</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>KCNJ11</td>
<td>AD</td>
<td>Permanent or transient: IUGR; possible developmental delay and seizures; responsive to sulfonylureas</td>
</tr>
<tr>
<td>INS</td>
<td>AD</td>
<td>Permanent: IUGR; insulin requiring</td>
</tr>
<tr>
<td>ABCC8</td>
<td>AD</td>
<td>Transient or permanent: IUGR; rarely developmental delay; responsive to sulfonylureas</td>
</tr>
<tr>
<td>6q24 (PLAG1, HYMA1)</td>
<td>AD for paternal duplications</td>
<td>Transient: IUGR; macroglossia; umbilical hernia; mechanisms include UPD6, paternal duplication or maternal methylation defect; may be treatable with medications other than insulin</td>
</tr>
<tr>
<td>GATA6</td>
<td>AD</td>
<td>Permanent: pancreatic hypoplasia; cardiac malformations; pancreatic exocrine insufficiency; insulin requiring</td>
</tr>
<tr>
<td>EIF2AK3</td>
<td>AR</td>
<td>Permanent: Wolcott-Rallison syndrome: epiphyseal dysplasia; pancreatic exocrine insufficiency; insulin requiring</td>
</tr>
<tr>
<td>FOXP3</td>
<td>X-linked</td>
<td>Permanent: immunodysregulation, polyendocrinopathy, enteropathy X-linked (IPEX) syndrome: autoimmune diabetes; autoimmune thyroid disease; exfoliative dermatitis; insulin requiring</td>
</tr>
</tbody>
</table>

AD, autosomal dominant; AR, autosomal recessive; IUGR, intrauterine growth restriction.
available from several centers. Readily available commercial genetic testing following the criteria listed below now enables a cost-effective (85), often cost-saving, genetic diagnosis that is increasingly supported by health insurance. A biomarker screening pathway such as the combination of urinary C-peptide/creatinine ratio and antibody screening may aid in determining who should get genetic testing for MODY (86). It is critical to correctly diagnose one of the monogenic forms of diabetes because these patients may be incorrectly diagnosed with type 1 or type 2 diabetes, leading to suboptimal, even potentially harmful, treatment regimens and delays in diagnosing other family members (87). The correct diagnosis is especially critical for those with GCK-MODY mutations where multiple studies have shown that no complications ensue in the absence of glucose-lowering therapy (88). Genetic counseling is recommended to ensure that affected individuals understand the patterns of inheritance and the importance of a correct diagnosis.

The diagnosis of monogenic diabetes should be considered in children and adults diagnosed with diabetes in early adulthood with the following findings:

- Diabetes diagnosed within the first 6 months of life (with occasional cases presenting later, mostly INS and ABCC8 mutations) (83,89)
- Diabetes without typical features of type 1 or type 2 diabetes (negative diabetes-associated autoantibodies, nonobese, lacking other metabolic features, especially with strong family history of diabetes)
- Stable, mild fasting hyperglycemia (100–150 mg/dL [5.5–8.5 mmol/L]), stable A1C between 5.6 and 7.6% (between 38 and 60 mmol/mol), especially if nonobese

CYSTIC FIBROSIS–RELATED DIABETES

Recommendations
- Annual screening for cystic fibrosis–related diabetes with oral glucose tolerance test should begin by age 10 years in all patients with cystic fibrosis not previously diagnosed with cystic fibrosis–related diabetes. B
- A1C is not recommended as a screening test for cystic fibrosis–related diabetes. B

Cystic fibrosis–related diabetes (CFRD) is the most common comorbidity in people with cystic fibrosis, occurring in about 20% of adolescents and 40–50% of adults. Diabetes in this population, compared with individuals with type 1 or type 2 diabetes, is associated with Worse nutritional status, more severe inflammatory lung disease, and greater mortality. Insulin resistance is the primary defect in CFRD. Genetically determined β-cell function and insulin resistance associated with infection and inflammation may also contribute to the development of CFRD. Milder abnormalities of glucose tolerance are even more common and occur at earlier ages than CFRD. Whether individuals with IGT should be treated with insulin replacement has not currently been determined. Although screening for diabetes before the age of 10 years can identify risk for progression to CFRD in those with abnormal glucose tolerance, no benefit has been established with respect to weight, height, BMI, or lung function. Continuous glucose monitoring or HOMA of β-cell function (90) may be more sensitive than OGGT to detect risk for progression to CFRD; however, evidence linking these results to long-term outcomes is lacking, and these tests are not recommended for screening (91).

CFRD mortality has significantly decreased over time, and the gap in mortality between cystic fibrosis patients with and without diabetes has considerably narrowed (92). There are limited clinical trial data on therapy for CFRD. The largest study compared three regimens: premeal insulin aspart, repaglinide, or oral placebo in cystic fibrosis patients with diabetes or abnormal glucose tolerance. Participants had weight loss in the year preceding treatment; however, in the insulin-treated group, this pattern was reversed, and patients gained 0.39 (± 0.21) BMI units (P = 0.02). The repaglinide-treated group had initial weight gain, but this was not sustained by 6 months. The placebo group continued to lose weight (93).

Insulin remains the most widely used therapy for CFRD (94).

Additional resources for the clinical management of CFRD can be found in the position statement “Clinical Care Guidelines for Cystic Fibrosis–Related Diabetes: A Position Statement of the American Diabetes Association and a Clinical Practice Guideline of the Cystic Fibrosis Foundation, Endorsed by the Pediatric Endocrine Society” (95) and in the International Society for Pediatric and Adolescent Diabetes’ 2014 clinical practice consensus guidelines (96).

POSTTRANSPLANTATION DIABETES MELLITUS

Recommendations
- Patients should be screened after organ transplantation for hyperglycemia, with a formal diagnosis of posttransplantation diabetes mellitus being made only if a patient is stable on an immunosuppressive regimen and in the absence of an acute infection. E
- The oral glucose tolerance test is the preferred test to make a diagnosis of posttransplantation diabetes mellitus. B
- Immunosuppressive regimens shown to provide the best outcomes for patient and graft survival should be used, irrespective of posttransplantation diabetes mellitus risk. E

Several terms are used in the literature to describe the presence of diabetes following organ transplantation. “New-onset diabetes after transplantation” (NODAT) is one such designation that describes individuals who develop new-onset diabetes following transplant. NODAT excludes patients with pretransplant diabetes that was undiagnosed as well as posttransplant hyperglycemia that resolves by the time of discharge (97). Another term, “postransplantation diabetes mellitus” (PTDM) (97,98), describes the presence of diabetes in the posttransplant setting irrespective of the timing of diabetes onset.

Hyperglycemia is very common during the early posttransplant period, with ~90% of kidney allograft recipients exhibiting hyperglycemia in the first few weeks following transplant (97–100). In most cases, such stress- or steroid-induced hyperglycemia resolves by the time of discharge (100,101). Although
the use of immunosuppressive therapies is a major contributor to the development of PTDM, the risks of transplant rejection outweigh the risks of PTDM and the role of the diabetes care provider is to treat hyperglycemia appropriately regardless of the type of immunosuppression (97). Risk factors for PTDM include both general diabetes risks (such as age, family history of diabetes, etc.) as well as transplant-specific factors, such as use of immunosuppressant agents (102). Whereas posttransplantation hyperglycemia is an important risk factor for subsequent PTDM, a formal diagnosis of PTDM is optimally made once the patient is stable on maintenance immunosuppression and in the absence of acute infection (100–102). The OGGT is considered the gold standard test for the diagnosis of PTDM (97,98,103,104). However, screening patients using fasting glucose and/or A1C can identify high-risk patients requiring further assessment and may reduce the number of overall OGGTs required.

Few randomized controlled studies have reported on the short- and long-term use of antihyperglycemic agents in the setting of PTDM (102,105,106). Most studies have reported that transplant patients with hyperglycemia and PTDM after transplantation have higher rates of rejection, infection, and rehospitalization (100,102,107).

Insulin therapy is the agent of choice for the management of hyperglycemia and diabetes in the hospital setting. After discharge, patients with preexisting diabetes could go back on their pretransplant regimen if they were in good control before transplantation. Those with previously poor control or with persistent hyperglycemia should continue insulin with frequent home self-monitoring of blood glucose to determine when insulin dose reductions may be needed and when it may be appropriate to switch to noninsulin agents.

No studies to date have established which noninsulin agents are safest or most efficacious in PTDM. The choice of agent is usually made based on the side effect profile of the medication and possible interactions with the patient’s immunosuppression regimen (102). Drug dose adjustments may be required because of decreases in the glomerular filtration rate, a relatively common complication in transplant patients. A small short-term pilot study reported that metformin was safe to use in renal transplant recipients (108), but its safety has not been determined in other types of organ transplant. Thiazolidinediones have been used successfully in patients with liver and kidney transplants, but side effects include fluid retention, heart failure, and osteopenia (109,110). Dipeptidyl peptidase 4 inhibitors do not interact with immunosuppressant drugs and have demonstrated safety in small clinical trials (111,112). Well-designed intervention trials examining the efficacy and safety of these and other antihyperglycemic agents in patients with PTDM are needed.

References
28. Ackermann RT, Cheng YJ, Williamson DF, Gregg EW. Identifying adults at high risk for diabetes and cardiovascular disease using hemoglobin

Werner EF, Petkner CM, Zuckerman L, et al. Screening for gestational diabetes mellitus: are the criteria proposed by the International Association of the Diabetes and Pregnancy Study Groups cost-effective? Diabetes Care 2012;35:529–535

3. Comprehensive Medical Evaluation and Assessment of Comorbidities: *Standards of Medical Care in Diabetes—2018*

Diabetes Care 2018;41(Suppl. 1):S28–S37 | https://doi.org/10.2337/dc18-S003

The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

PATIENT-CENTERED COLLABORATIVE CARE

Recommendation
- A patient-centered communication style that uses person-centered and strength-based language, active listening, elicits patient preferences and beliefs, and assesses literacy, numeracy, and potential barriers to care should be used to optimize patient health outcomes and health-related quality of life. B

A successful medical evaluation depends on beneficial interactions between the patient and the care team. The Chronic Care Model (1–3) (see Section 1 “Improving Care and Promoting Health in Populations”) is a patient-centered approach to care that requires a close working relationship between the patient and clinicians involved in treatment planning. People with diabetes should receive health care from an interdisciplinary team that may include physicians, nurse practitioners, physician assistants, nurses, dietitians, exercise specialists, pharmacists, dentists, podiatrists, and mental health professionals. Individuals with diabetes must assume an active role in their care. The patient, family or support persons, physician, and health care team should together formulate the management plan, which includes lifestyle management (see Section 4 “Lifestyle Management”).

Treatment goals and plans should be created with the patients based on their individual preferences, values, and goals. The management plan should take into account the patient’s age, cognitive abilities, school/work schedule and conditions, health beliefs, support systems, eating patterns, physical activity, social situation, financial concerns, cultural factors, literacy and numeracy (mathematical literacy), diabetes complications and duration of disease, comorbidities, health priorities, other medical conditions, preferences for care, and life expectancy. Various
strategies and techniques should be used to support patients’ self-management efforts, including providing education on problem-solving skills for all aspects of diabetes management.

Provider communications with patients/families should acknowledge that multiple factors impact glycemic management, but also emphasize that collaboratively developed treatment plans and a healthy lifestyle can significantly improve disease outcomes and well-being (4–7). Thus, the goal of provider-patient communication is to establish a collaborative relationship and to assess and address self-management barriers without blaming patients for “noncompliance” or “nonadherence” when the outcomes of self-management are not optimal (8). The familiar terms “noncompliance” and “nonadherence” denote a passive, obedient role for a person with diabetes in “following doctor’s orders” that is at odds with the active role people with diabetes take in directing the day-to-day decision-making, planning, monitoring, evaluation, and problem-solving involved in diabetes self-management. Using a nonjudgmental approach that normalizes periodic lapses in self-management may help minimize patients’ resistance to reporting problems with self-management. Empathizing and using active listening techniques, such as open-ended questions, reflective statements, and summarizing what the patient said, can help facilitate communication. Patients’ perceptions about their own ability, or self-efficacy, to self-manage diabetes are one important psychosocial factor related to improved diabetes self-management and treatment outcomes in diabetes (9–13) and should be a target of ongoing assessment, patient education, and treatment planning.

COMPREHENSIVE MEDICAL EVALUATION

Recommendations

- A complete medical evaluation should be performed at the initial visit to:
 - Confirm the diagnosis and classify diabetes. B
 - Evaluate for diabetes complications and potential comorbid conditions. E
 - Review previous treatment and risk factor control in patients with established diabetes. E
 - Begin patient engagement in the formulation of a care management plan. B
 - Develop a plan for continuing care. B
 - A follow-up visit should include most components of the initial comprehensive medical evaluation including: interval medical history; assessment of medication-taking behavior and intolerance/side effects; physical examination; laboratory evaluation as appropriate to assess attainment of A1C and metabolic targets; and assessment of risk for complications, diabetes self-management behaviors, nutrition, psychosocial health, and the need for referrals, immunizations, or other routine health maintenance screening. B

The comprehensive medical evaluation includes the initial and follow-up evaluations, assessment of complications, psychosocial assessment, management of comorbid conditions, and engagement of the patient throughout the process. While a comprehensive list is provided in Table 3.1, in clinical practice, the provider may need to prioritize the components of the medical evaluation given the available resources and time. The goal is to provide the health care team information to optimally support a patient. In addition to the medical history, physical examination, and laboratory tests, providers should assess diabetes self-management behaviors, nutrition, and psychosocial health (see Section 4 “Lifestyle Management”) and give guidance on routine immunizations. The assessment of sleep pattern and duration should be considered; a recent meta-analysis found that poor sleep quality, short sleep, and long sleep were associated with higher A1C in people with type 2 diabetes (14). Interval follow-up visits should occur at least every 3–6 months, individualized to the patient, and then annually.

Lifestyle management and psychosocial care are the cornerstones of diabetes management. Patients should be referred for diabetes self-management education and support (DSMES), medical nutrition therapy (MNT), and psychosocial/emotional health concerns if indicated. Patients should receive recommended preventive care services (e.g., immunizations, cancer screening, etc.); smoking cessation counseling; and ophthalmological, dental, and podiatric referrals.

Additional referrals should be arranged as necessary (Table 3.2). Clinicians should ensure that individuals with diabetes are appropriately screened for complications and comorbidities. Discussing and implementing an approach to glycemic control with the patient is a part, not the sole goal, of care.

Immunization

Recommendations

- Provide routinely recommended vaccinations for children and adults with diabetes by age. C
- Annual vaccination against influenza is recommended for all people ≥6 months of age, including those with diabetes. C
- Vaccination against pneumococcal disease, including pneumococcal pneumonia, with 13-valent pneumococcal conjugate vaccine (PCV13) is recommended for children before age 2 years. People with diabetes ages 2 through 64 years should also receive 23-valent pneumococcal polysaccharide vaccine (PPSV23). At age ≥65 years, regardless of vaccination history, additional PPSV23 vaccination is necessary. C
- Administer 3-dose series of hepatitis B vaccine to unvaccinated adults with diabetes ages 19 through 59 years. C
- Consider administering 3-dose series of hepatitis B vaccine to unvaccinated adults with diabetes ages ≥60 years. C

Children and adults with diabetes should receive vaccinations according to age-specific recommendations (15,16). The child and adolescent vaccination schedule is available at www.cdc.gov/vaccines/schedules/hcp/imz/child-adolescent.html, and the adult vaccination schedule is available at www.cdc.gov/vaccines/schedules/hcp/imz/adult.html. These immunization schedules include vaccination schedules specifically for children, adolescents, and adults with diabetes.

People with diabetes are at higher risk for hepatitis B infection and are more likely to develop complications from influenza and pneumococcal disease. The Centers for Disease Control and Prevention (CDC) Advisory Committee on Immunization Practices (ACIP) recommends influenza, pneumococcal, and hepatitis B vaccinations specifically for people with diabetes. Vaccination against tetanus-diphtheria-pertussis, measles-mumps-
Table 3.1 - Components of the comprehensive diabetes medical evaluation at initial and follow-up visits

<table>
<thead>
<tr>
<th>Component</th>
<th>Initial Visit</th>
<th>Every Follow-Up Visit</th>
<th>Annual Visit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Past Medical and Family History</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes history</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Characteristics at onset (e.g., age, symptoms)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Review of previous treatment regimens and response</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Assess frequency/cause/severity of past hospitalizations</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Family history</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Family history of diabetes in a first-degree relative</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Family history of autoimmune disorder</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Personal history of complications and common comorbidities</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Macrovascular and microvascular</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Common comorbidities</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Presence of hemoglobinopathies or anemias</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• High blood pressure or abnormal lipids</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Last dental visit</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Last dilated eye exam</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Visits to specialists</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Interval history</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Changes in medical/family history since last visit</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Social History</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assess lifestyle and behavior patterns</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Eating patterns and weight history</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Sleep behaviors and physical activity</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Familiarity with carbohydrate counting in type 1 diabetes</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Tobacco, alcohol, and substance use</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Identify existing social supports</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Interval history</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Changes in social history since last visit</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Medications and Vaccinations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Medication-taking behavior</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Medication intolerance or side effects</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Complementary and alternative medicine use</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Vaccination history and needs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Technology Use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Assess use of health apps, online education, patient portals, etc.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Glucose monitoring (meter/CGM): results and data use</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Review insulin pump settings</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Screening</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychosocial conditions</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Screen for depression, anxiety, and disordered eating; refer for further assessment or intervention if warranted</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Consider assessment for cognitive impairment*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Diabetes self-management education and support</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• History of dietitian/diabetes educator visits</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Screen for barriers to diabetes self-management</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Refer or offer local resources and support as needed</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Hypoglycemia</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Timing of episodes, awareness, frequency and causes</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Pregnancy planning</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• For women with childbearing capacity, review contraceptive needs and preconception planning</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Continued on p. S31
Table 3.1 – Components of the comprehensive diabetes medical evaluation at initial and follow-up visits

<table>
<thead>
<tr>
<th></th>
<th>Initial Visit</th>
<th>Every Follow-up Visit</th>
<th>Annual Visit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Examination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height, weight, and BMI; growth/pubertal development in children and adolescents</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Blood pressure determination</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Orthostatic blood pressure measures (when indicated)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Fundoscopic examination (refer to eye specialist)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Thyroid palpation</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Skin examination (e.g., acanthosis nigricans, insulin injection or insertion sites, lipodystrophy)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Comprehensive foot examination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visual inspection (e.g., skin integrity, callous formation, foot deformity or ulcer, toenails)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Screen for PAD (pedal pulses; refer for ABI if diminished)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Determination of temperature, vibration or pinprick sensation, and 10-g monofilament exam</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Laboratory Evaluation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1C, if the results are not available within the past 3 months</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>If not performed/available within the past year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipid profile, including total, LDL, and HDL cholesterol and triglycerides<sup>#</sup></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Liver function tests<sup>#</sup></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Spot urinary albumin-to-creatinine ratio</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Serum creatinine and estimated glomerular filtration rate<sup>†</sup></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Thyroid-stimulating hormone in patients with type 1 diabetes<sup>§</sup></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Vitamin B12 if on metformin (when indicated)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Serum potassium levels in patients on ACE inhibitors, ARBs, or diuretics<sup>†</sup></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Assessment and Plan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goal setting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set A1C/blood glucose target and monitoring frequency</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>If hypertension diagnosed, establish blood pressure goal</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Incorporate new members to the care team as needed</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Diabetes education and self-management support needs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cardiovascular risk assessment and staging of CKD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of ASCVD</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Presence of ASCVD risk factors (see Table 9.2)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Staging of CKD (see Table 10.1)<sup>†</sup></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Therapeutic treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifestyle management</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Pharmacologic therapy</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Referrals to specialists (including dietitian and diabetes educator) as needed</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Use of glucose monitoring and insulin delivery devices</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

ABI, ankle-brachial pressure index; ARBs, angiotensin receptor blockers; ASCVD, atherosclerotic cardiovascular disease; CGM, continuous glucose monitoring; CKD, chronic kidney disease; PAD, peripheral arterial disease.

[#]65 years:

[†]May be needed more frequently in patients with known chronic kidney disease or with changes in medications that affect kidney function and serum potassium (see Table 10.2):

[§]May also need to be checked after initiation or dose changes of medications that affect these laboratory values (i.e., diabetes medications, blood pressure medications, cholesterol medications, or thyroid medications):

[†]In people without dyslipidemia and not on cholesterol-lowering therapy, testing may be less frequent.
rubella, human papillomavirus, and shingles are also important for adults with diabetes, as they are for the general population.

Influenza

Influenza is a common, preventable infectious disease associated with high mortality and morbidity in vulnerable populations including the young and the elderly and people with chronic diseases. Influenza vaccination in people with diabetes has been found to significantly reduce influenza and diabetes-related hospital admissions (17).

Pneumococcal Pneumonia

Like influenza, pneumococcal pneumonia is a common, preventable disease. People with diabetes may be at increased risk for the bacteremic form of pneumococcal infection and have been reported to have a high risk of nosocomial bacteremia, with a mortality rate as high as 50% (18). The American Diabetes Association (ADA) endorses recommendations from the CDC ACIP that adults age ≥65 years, who are at higher risk for pneumococcal disease, receive an additional 23-valent pneumococcal polysaccharide vaccine (PPSV23), regardless of prior pneumococcal vaccination history. See detailed recommendations at www.cdc.gov/vaccines/hcp/acip-recs/vacc-specifc/pneumo.html.

Hepatitis B

Compared with the general population, people with type 1 or type 2 diabetes have higher rates of hepatitis B. This may be due to contact with infected blood or through improper equipment use (glucose monitoring devices or infected needles). Because of the higher likelihood of transmission, hepatitis B vaccine is recommended for adults with diabetes age <60 years. For adults age ≥60 years, hepatitis B vaccine may be administered at the discretion of the treating clinician based on the patient’s likelihood of acquiring hepatitis B infection.

Autoimmune Diseases

Recommendation

- Consider screening patients with type 1 diabetes for autoimmune thyroid disease and celiac disease soon after diagnosis.

People with type 1 diabetes are at increased risk for other autoimmune diseases including thyroid disease, primary adrenal insufficiency, celiac disease, autoimmune gastritis, autoimmune hepatitis, dermatomyositis, and myasthenia gravis (24–26). Type 1 diabetes may also occur with other autoimmune diseases in the context of specific genetic disorders or polyclanular autoimmune syndromes (27).

In autoimmune diseases, the immune system fails to maintain self-tolerance to specific peptides within target organs. It is likely that many factors trigger autoimmune disease; however, common triggering factors are known for only some autoimmune conditions (i.e., gluten peptides in celiac disease) (see Section 12 “Children and Adolescents”).

Cancer

Diabetes is associated with increased risk of cancers of the liver, pancreas, endometrium, colon/rectum, breast, and bladder (28). The association may result from shared risk factors between type 2 diabetes and cancer (older age, obesity, and physical inactivity) but may also be due to diabetes-related factors (29), such as underlying disease physiology or diabetes treatments, although evidence for these links is scarce. Patients with diabetes should be encouraged to undergo recommended age- and sex-appropriate cancer screenings and to reduce their modifiable cancer risk factors (obesity, physical inactivity, and smoking).

Cognitive Impairment/Dementia

Recommendation

- In people with a history of cognitive impairment/dementia, intensive glucose control cannot be expected to remediate deficits. Treatment should be tailored to avoid significant hypoglycemia.

Diabetes is associated with a significantly increased risk and rate of cognitive decline and an increased risk of dementia (30,31). A recent meta-analysis of prospective observational studies in people with diabetes showed 73% increased risk of all types of dementia, 56% increased risk of Alzheimer dementia, and 127% increased risk of vascular dementia compared with individuals without diabetes (32). The reverse is also true: people with Alzheimer dementia are more likely to develop diabetes than people without Alzheimer dementia. In a 15-year prospective study of community-dwelling people >60 years of age, the presence of diabetes at baseline significantly increased the age- and sex-adjusted incidence of all-cause dementia, Alzheimer disease, and vascular dementia compared with rates in those with normal glucose tolerance (33).

Hyperglycemia

In those with type 2 diabetes, the degree and duration of hyperglycemia are related to dementia. More rapid cognitive decline is associated with both increased A1C and longer duration of diabetes (34). The Action to Control Cardiovascular Risk in Diabetes (ACCORD) study found that each 1% higher A1C level was associated with lower cognitive function in individuals with type 2 diabetes (35). However, the ACCORD study found no difference in cognitive outcomes in participants randomly assigned to intensive and standard glyemic control, supporting the recommendation that intensive glucose control should not be advised for the improvement of cognitive function in individuals with type 2 diabetes (36).

Hypoglycemia

In type 2 diabetes, severe hypoglycemia is associated with reduced cognitive function, and those with poor cognitive function have more severe hypoglycemia. In a long-term study of older patients with type 2 diabetes, individuals with one or more recorded episode of severe hypoglycemia had a stepwise increase in risk of dementia (37). Likewise, the ACCORD trial found that as cognitive function decreased, the risk of severe hypoglycemia increased (38). Tailoring glycemic therapy

<table>
<thead>
<tr>
<th>Table 3.2—Referrals for initial care management</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Eye care professional for annual dilated eye exam</td>
</tr>
<tr>
<td>• Family planning for women of reproductive age</td>
</tr>
<tr>
<td>• Registered dietitian for MNT</td>
</tr>
<tr>
<td>• Dentist for comprehensive dental and periodontal examination</td>
</tr>
<tr>
<td>• Mental health professional, if indicated</td>
</tr>
</tbody>
</table>

Table 3.2—Referrals for initial care management

- Eye care professional for annual dilated eye exam
- Family planning for women of reproductive age
- Registered dietitian for MNT
- Dentist for comprehensive dental and periodontal examination
- Mental health professional, if indicated
may help to prevent hypoglycemia in individuals with cognitive dysfunction.

Nutrition

In one study, adherence to the Mediterranean diet correlated with improved cognitive function (39). However, a recent Cochrane review found insufficient evidence to recommend any dietary change for the prevention or treatment of cognitive dysfunction (40).

Statins

A systematic review has reported that data do not support an adverse effect of statins on cognition (41). The U.S. Food and Drug Administration (FDA) postmarketing surveillance databases have also revealed a low reporting rate for cognitive-related adverse events, including cognitive dysfunction or dementia, with statin therapy, similar to rates seen with other commonly prescribed cardiovascular medications (41). Therefore, fear of cognitive decline should not be a barrier to statin use in individuals with diabetes and a high risk for cardiovascular disease.

Fatty Liver Disease

Diabetes is associated with the development of nonalcoholic chronic liver disease and with hepatocellular carcinoma (42). Elevations of hepatic transaminase concentrations are associated with higher BMI, waist circumference, and triglyceride levels and lower HDL cholesterol levels. Interventions that improve metabolic abnormalities in patients with diabetes (weight loss, glycemic control, and treatment with specific drugs for hyperglycemia or dyslipidemia) are also beneficial for fatty liver disease (43,44).

Pancreatitis

Recommendation

- Islet autotransplantation should be considered for patients requiring total pancreatectomy for medically refractory chronic pancreatitis to prevent postsurgical diabetes.

Diabetes is linked to diseases of the exocrine pancreas such as pancreatitis, which may disrupt the global architecture or physiology of the pancreas, often resulting in both exocrine and endocrine dysfunction. Up to half of patients with diabetes may have impaired exocrine pancreas function (45). People with diabetes are at an approximately twofold higher risk of developing acute pancreatitis (46).

Conversely, prediabetes and/or diabetes has been found to develop in approximately one-third of patients after an episode of acute pancreatitis (47), thus the relationship is likely bidirectional. Postpancreatitis diabetes may include either new-onset disease or previously unrecognized diabetes (48). Studies of patients treated with incretin-based therapies for diabetes have also reported that pancreatitis may occur more frequently with these medications, but results have been mixed (49,50).

Islet autotransplantation should be considered for patients requiring total pancreatectomy for medically refractory chronic pancreatitis to prevent postsurgical diabetes. Approximately one-third of patients undergoing total pancreatectomy with islet autotransplantation are insulin free one year postoperatively, and observational studies from different centers have demonstrated islet graft function up to a decade after the surgery in some patients (51–55). Both patient and disease factors should be carefully considered when deciding the indications and timing of this surgery. Surgeries should be performed in skilled facilities that have demonstrated expertise in islet autotransplantation.

Fractures

Age-specific hip fracture risk is significantly increased in people with both type 1 (relative risk 6.3) and type 2 (relative risk 1.7) diabetes in both sexes (56). Type 1 diabetes is associated with osteoporosis, but in type 2 diabetes, an increased risk of hip fracture is seen despite higher bone mineral density (BMD) (57). In three large observational studies of older adults, femoral neck BMD T score and the World Health Organization Fracture Risk Assessment Tool (FRAX) score were associated with hip and nonspine fractures. Fracture risk was higher in participants with diabetes compared with those without diabetes for a given T score and age or for a given FRAX score (58). Providers should assess fracture history and risk factors in older patients with diabetes and recommend measurement of BMD if appropriate for the patient’s age and sex. Fracture prevention strategies for people with diabetes are the same as for the general population and include vitamin D supplementation. For patients with type 2 diabetes with fracture risk factors, thiazolidinediones (59) and sodium–glucose cotransporter 2 inhibitors (60) should be used with caution.

Hearing Impairment

Hearing impairment, both in high-frequency and low/mid-frequency ranges, is more common in people with diabetes than in those without, perhaps due to neuropathy and/or vascular disease. In a National Health and Nutrition Examination Survey (NHANES) analysis, hearing impairment was about twice as prevalent in people with diabetes compared with those without, after adjusting for age and other risk factors for hearing impairment (61).

HIV

Recommendation

- Patients with HIV should be screened for diabetes and prediabetes with a fasting glucose level every 6–12 months before starting antiretroviral therapy and 3 months after starting or changing antiretroviral therapy. If initial screening results are normal, checking fasting glucose every year is advised.

Diabetes risk is increased with certain protease inhibitors (PIs) and nucleoside reverse transcriptase inhibitors (NRTIs). New-onset diabetes is estimated to occur in more than 5% of patients infected with HIV on PIs, whereas more than 15% may have prediabetes (62). PIs are associated with insulin resistance and may also lead to apoptosis of pancreatic β-cells. NRTIs also affect fat distribution (both lipohypertrophy and lipoatrophy), which is associated with insulin resistance.

Individuals with HIV are at higher risk for developing prediabetes and diabetes on antiretroviral (ARV) therapies, so a screening protocol is recommended (63). The A1C test underestimates glycaemia in people with HIV and is not recommended for diagnosis and may present challenges for monitoring (64). In those with prediabetes, weight loss through healthy nutrition and physical activity may reduce the progression toward diabetes. Among patients with HIV and diabetes, preventive health care using an approach similar to that used in patients without HIV is critical to reduce the risks of microvascular and macrovascular complications.

For patients with HIV and ARV-associated hyperglycemia, it may be appropriate to consider discontinuing the problematic ARV agents if safe and effective alternatives are available (65). Before making ARV substitutions, carefully consider the possible
effect on HIV virological control and the potential adverse effects of new ARV agents. In some cases, antihyperglycemic agents may still be necessary.

Low Testosterone in Men

Recommendation
- In men with diabetes who have symptoms or signs of hypogonadism such as decreased sexual desire (libido) or activity, or erectile dysfunction, consider screening with a morning serum testosterone level. B

Mean levels of testosterone are lower in men with diabetes compared with age-matched men without diabetes, but obesity is a major confounder (66,67). Treatment in asymptomatic men is controversial. Testosterone replacement in men with symptomatic hypogonadism may have benefits including improved sexual function, well being, muscle mass and strength, and bone density. (68). In men with diabetes who have symptoms or signs of low testosterone (hypogonadism), a morning total testosterone should be measured using an accurate and reliable assay. Free or bioavailable testosterone levels should also be measured in men with diabetes who have total testosterone levels close to the lower limit, given expected decreases in sex hormone–binding globulin with diabetes. Further testing (such as luteinizing hormone and follicle-stimulating hormone levels) may be needed to distinguish between primary and secondary hypogonadism.

Obstructive Sleep Apnea

Age-adjusted rates of obstructive sleep apnea, a risk factor for cardiovascular disease, are significantly higher (4- to 10-fold) with obesity, especially with central obesity (69). The prevalence of obstructive sleep apnea in the population with type 2 diabetes may be as high as 23%, and the prevalence of any sleep-disordered breathing may be as high as 58% (70,71). In obese participants enrolled in the Action for Health in Diabetes (Look AHEAD) trial, it exceeded 80% (72). Sleep apnea treatment (lifestyle modification, continuous positive airway pressure, oral appliances, and surgery) significantly improves quality of life and blood pressure control. The evidence for a treatment effect on glycemic control is mixed (73).

Periodontal Disease

Periodontal disease is more severe, and may be more prevalent, in patients with diabetes than in those without (74,75). Current evidence suggests that periodontal disease adversely affects diabetes outcomes, although evidence for treatment benefits remains controversial (23).

Psychosocial/Emotional Disorders

Prevalence of clinically significant psychopathology diagnoses are considerably more common in people with diabetes than in those without the disease (76). Symptoms, both clinical and subclinical, that interfere with the person’s ability to carry out daily diabetes self-management tasks must be addressed. Providers should consider an assessment of symptoms of depression, anxiety, and disordered eating, and of cognitive capacities using patient-appropriate standardized/validated tools at the initial visit, at periodic intervals, and when there is a change in disease, treatment, or life circumstance. Including caregivers and family members in this assessment is recommended. Diabetes distress is addressed in Section 4 “Lifestyle Management,” as this state is very common and distinct from the psychological disorders discussed below (77).

Anxiety Disorders

Recommendations
- Consider screening for anxiety in people exhibiting anxiety or worries regarding diabetes complications, insulin injections or infusion, taking medications, and/or hypoglycemia that interfere with self-management behaviors and those who express fear, dread, or irrational thoughts and/or show anxiety symptoms such as avoidance behaviors, excessive repetitive behaviors, or social withdrawal. Refer for treatment if anxiety is present. B
- People with hypoglycemia unawareness, which can co-occur with fear of hypoglycemia, should be treated using blood glucose awareness training (or other evidence-based intervention) to help reestablish awareness of hypoglycemia and reduce fear of hypoglycemia. A

Anxiety symptoms and diagnosable disorders (e.g., generalized anxiety disorder, body dysmorphic disorder, obsessive-compulsive disorder, specific phobias, and posttraumatic stress disorder) are common in people with diabetes (78). The Behavioral Risk Factor Surveillance System (BRFSS) estimated the lifetime prevalence of generalized anxiety disorder to be 19.5% in people with either type 1 or type 2 diabetes (79). Common diabetes-specific concerns include fears related to hypoglycemia (80,81), not meeting blood glucose targets (78), and insulin injections or infusion (82). Onset of complications presents another critical point when anxiety can occur (83). People with diabetes who exhibit excessive diabetes self-management behaviors well beyond what is prescribed or needed to achieve glycemic targets may be experiencing symptoms of obsessive-compulsive disorder (84).

General anxiety is a predictor of injection-related anxiety and associated with fear of hypoglycemia (81,85). Fear of hypoglycemia and hypoglycemia unawareness often co-occur, and interventions aimed at treating one often benefit both (86). Fear of hypoglycemia may explain avoidance of behaviors associated with lowering glucose such as increasing insulin doses or frequency of monitoring. If fear of hypoglycemia is identified and a person does not have symptoms of hypoglycemia, a structured program, blood glucose awareness training, delivered in routine clinical practice, can improve A1C, reduce the rate of severe hypoglycemia, and restore hypoglycemia awareness (87,88).

Depression

Recommendations
- Providers should consider annual screening of all patients with diabetes, especially those with a self-reported history of depression, for depressive symptoms with age-appropriate depression screening measures, recognizing that further evaluation will be necessary for individuals who have a positive screen. B
- Beginning at diagnosis of complications or when there are significant changes in medical status, consider assessment for depression. B
- Referrals for treatment of depression should be made to mental health providers with experience using cognitive behavioral therapy, interpersonal therapy, or other evidence-based treatment approaches in conjunction with collaborative care with the patient’s diabetes treatment team. A
History of depression, current depression, and antidepressant medication use are risk factors for the development of type 2 diabetes, especially if the individual has other risk factors such as obesity and family history of type 2 diabetes (89–91). Elevated depressive symptoms and depressive disorders affect one in four patients with type 1 or type 2 diabetes (92). Thus, routine screening for depressive symptoms is indicated in this high-risk population including people with type 1 or type 2 diabetes, gestational diabetes mellitus, and postpartum diabetes. Regardless of diabetes type, women have significantly higher rates of depression than men (93).

Routine monitoring with patient-appropriate validated measures can help to identify if referral is warranted. Adult patients with a history of depressive symptoms or disorder need ongoing monitoring of depression recurrence within the context of routine care (88). Integrating mental and physical health care can improve outcomes. When a patient is in psychological therapy (talk therapy), the mental health provider should be incorporated into the diabetes treatment team (94).

Disordered Eating Behavior

Recommendations

- Providers should consider reevaluating the treatment regimen of people with diabetes who present with symptoms of disordered eating behavior, an eating disorder, or disrupted patterns of eating. **B**
- Consider screening for disordered or disrupted eating using validated screening measures when hyperglycemia and weight loss are unexplained based on self-reported behaviors related to medication dosing, meal plan, and physical activity. In addition, a review of the medical regimen is recommended to identify potential treatment-related effects on hunger/caloric intake. **B**

Estimated prevalence of disordered eating behaviors and diagnosable eating disorders in people with diabetes varies (95–97). For people with type 1 diabetes, insulin omission causing glycosuria in order to lose weight is the most commonly reported disordered eating behavior (98,99); in people with type 2 diabetes, bingeing (excessive food intake with an accompanying sense of loss of control) is most commonly reported. For people with type 2 diabetes treated with insulin, intentional omission is also frequently reported (100). People with diabetes and diagnosable eating disorders have high rates of comorbid psychiatric disorders (101). People with type 1 diabetes and eating disorders have high rates of diabetes distress and fear of hypoglycemia (102).

When evaluating symptoms of disordered or disrupted eating in people with diabetes, etiology and motivation for the behavior should be considered (97,103). Adjuvant medication such as glucagon-like peptide 1 receptor agonists (104) may help individuals not only to meet glycemic targets but also to regulate hunger and food intake, thus having the potential to reduce uncontrollable hunger and bulimic symptoms.

Serious Mental Illness

Recommendations

- Annually screen people who are prescribed atypical antipsychotic medications for prediabetes or diabetes. **B**
- If a second-generation antipsychotic medication is prescribed for adolescents or adults with diabetes, changes in weight, glycemic control, and cholesterol levels should be carefully monitored and the treatment regimen should be reassessed. **C**
- Incorporate monitoring of diabetes self-care activities into treatment goals in people with diabetes and serious mental illness. **B**

Studies of individuals with serious mental illness, particularly schizophrenia and other thought disorders, show significantly increased rates of type 2 diabetes (105). People with schizophrenia should be monitored for type 2 diabetes because of the known comorbidity. Disordered thinking and judgment can be expected to make it difficult to engage in behaviors that reduce risk factors for type 2 diabetes, such as restrained eating for weight management. Coordinated management of diabetes or prediabetes and serious mental illness is recommended to achieve diabetes treatment targets. In addition, those taking second-generation (atypical) antipsychotics such as olanzapine require greater monitoring because of an increase in risk of type 2 diabetes associated with this medication (106).

References

14. Lee SWH, Ng KY, Chin WK. The impact of sleep amount and sleep quality on glycemic control in
83. Young-Hyman D, Peyrot M. Psychosocial Care for People with Diabetes. Alexandria, VA, American Diabetes Association, 2012
100. Weinger K, Beverly EA. Barriers to achieving glycemic targets: who omits insulin and why? Diabetes Care 2010;33:450–452
4. Lifestyle Management: Standards of Medical Care in Diabetes—2018

Diabetes Care 2018;41(Suppl. 1):S38–S50 | https://doi.org/10.2337/dc18-S004

The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

Lifestyle management is a fundamental aspect of diabetes care and includes diabetes self-management education and support (DSMES), medical nutrition therapy (MNT), physical activity, smoking cessation counseling, and psychosocial care. Patients and care providers should focus together on how to optimize lifestyle from the time of the initial comprehensive medical evaluation, throughout all subsequent evaluations and follow-up, and during the assessment of complications and management of comorbid conditions in order to enhance diabetes care.

DIABETES SELF-MANAGEMENT EDUCATION AND SUPPORT

Recommendations

- In accordance with the national standards for diabetes self-management education and support, all people with diabetes should participate in diabetes self-management education to facilitate the knowledge, skills, and ability necessary for diabetes self-care and in diabetes self-management support to assist with implementing and sustaining skills and behaviors needed for ongoing self-management. B
- There are four critical times to evaluate the need for diabetes self-management education and support: at diagnosis, annually, when complicating factors arise, and when transitions in care occur. E
- Facilitating appropriate diabetes self-management and improving clinical outcomes, health status, and quality of life are key goals of diabetes self-management education and support to be measured and monitored as part of routine care. C
- Effective diabetes self-management education and support should be patient centered, may be given in group or individual settings or using technology, and should help guide clinical decisions. A
- Because diabetes self-management education and support can improve outcomes and reduce costs B, adequate reimbursement by third-party payers is recommended. E

© 2017 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals.org/content/license.
DSMES services facilitate the knowledge, skills, and abilities necessary for optimal diabetes self-care and incorporate the needs, goals, and life experiences of the person with diabetes. The overall objectives of DSMES are to support informed decision-making, self-care behaviors, problem solving, and active collaboration with the health care team to improve clinical outcomes, health status, and quality of life in a cost-effective manner (1). Providers are encouraged to consider the burden of treatment and the patient’s level of confidence/self-efficacy for management behaviors as well as the level of social and family support when providing DSMES. In addition, in response to the growing literature that associates potentially judgmental words to increased feelings of shame and guilt, providers are encouraged to consider the impact that language has on building therapeutic relationships and to choose positive, strength-based words and phrases that put people first (2). Patient performance of self-management behaviors as well as psychosocial factors impacting the person’s self-management should be monitored.

DSMES and the current national standards guiding it (1,3) are based on evidence of benefit. Specifically, DSMES helps people with diabetes to identify and implement effective self-management strategies and cope with diabetes at the four critical time points (described below) (1). Ongoing DSMES helps people with diabetes to maintain effective self-management throughout a lifetime of diabetes as they face new challenges and as advances in treatment become available (4).

Four critical time points have been defined when the need for DSMES is to be evaluated by the medical care provider and/or multidisciplinary team, with referrals made as needed (1):

1. At diagnosis
2. Annually for assessment of education, nutrition, and emotional needs
3. When new complicating factors (health conditions, physical limitations, emotional factors, or basic living needs) arise that influence self-management
4. When transitions in care occur

DSMES focuses on supporting patient empowerment by providing people with diabetes the tools to make informed self-management decisions (5). Diabetes care has shifted to an approach that places the person with diabetes and his or her family at the center of the care model, working in collaboration with health care professionals. Patient-centered care is respectful of and responsive to individual patient preferences, needs, and values. It ensures that patient values guide all decision making (6).

Evidence for the Benefits

Studies have found that DSMES is associated with improved diabetes knowledge and self-care behaviors (7), lower A1C (6, 8–10), lower self-reported weight (11,12), improved quality of life (9,13), reduced all-cause mortality risk (14), healthy coping (15,16), and reduced health care costs (17–19). Better outcomes were reported for DSMES interventions that were over 10 h in total duration (10), included ongoing support (4,20), were culturally (21,22) and age appropriate (23,24), were tailored to individual needs and preferences, and addressed psychosocial issues and incorporated behavioral strategies (5,15,25, 26). Individual and group approaches are effective (12,27), with a slight benefit realized by those who engage in both (10). Emerging evidence demonstrates the benefit of Internet-based DSMES services for diabetes prevention and the management of type 2 diabetes (28–30). Technology-enabled diabetes self-management solutions improve A1C most effectively when there is two-way communication between the patient and the health care team, individualized feedback, use of patient-generated health data, and education (30). There is growing evidence for the role of community health workers (31), as well as peer (31–33) and lay leaders (34), in providing ongoing support.

DSMES is associated with an increased use of primary care and preventive services (17,35,36) and less frequent use of acute care and inpatient hospital services (11). Patients who participate in DSMES are more likely to follow best practice treatment recommendations, particularly among the Medicare population, and have lower Medicare and insurance claim costs (18,35). Despite these benefits, reports indicate that only 5–7% of individuals eligible for DSMES through Medicare or a private insurance plan actually receive it (37,38). This low participation may be due to lack of referral or other identified barriers such as logistical issues (timing, costs) and the lack of a perceived benefit (39). Thus, in addition to educating referring providers about the benefits of DSMES and the critical times to refer (1), alternative and innovative models of DSMES delivery need to be explored and evaluated.

Reimbursement

Medicare reimburses DSMES when that service meets the national standards (7) and is recognized by the American Diabetes Association (ADA) or other approval bodies. DSMES is also covered by most health insurance plans. Ongoing support has been shown to be instrumental for improving outcomes when it is implemented after the completion of education services. DSMES is frequently reimbursed when performed in person. However, although DSMES can also be provided via phone calls and telehealth, these remote versions may not always be reimbursed. Changes in reimbursement policies that increase DSMES access and utilization will result in a positive impact to beneficiaries’ clinical outcomes, quality of life, health care utilization, and costs (40).

NUTRITION THERAPY

For many individuals with diabetes, the most challenging part of the treatment plan is determining what to eat and following a meal plan. There is not a one-size-fits-all eating pattern for individuals with diabetes, and meal planning should be individualized. Nutrition therapy has an integral role in overall diabetes management, and each person with diabetes should be actively engaged in education, self-management, and treatment planning with his or her health care team, including the collaborative development of an individualized eating plan (41,42). All individuals with diabetes should be offered a referral for individualized MNT, preferably provided by a registered dietitian who is knowledgeable and skilled in providing diabetes-specific MNT. MNT delivered by a registered dietitian is associated with A1C decreases of 1.0–1.9% for people with type 1 diabetes (43–46) and 0.3–2% for people with type 2 diabetes (46–50). See Table 4.1 for specific nutrition recommendations.

For complete discussion and references, see the ADA position statement “Nutrition Therapy Recommendations for the Management of Adults With Diabetes” (42).

Goals of Nutrition Therapy for Adults With Diabetes

1. To promote and support healthful eating patterns, emphasizing a variety of nutrient-dense foods in appropriate...
<table>
<thead>
<tr>
<th>Topic</th>
<th>Recommendations</th>
<th>Evidence rating</th>
</tr>
</thead>
</table>
| **Effectiveness of nutrition therapy** | • An individualized MNT program, preferably provided by a registered dietitian, is recommended for all people with type 1 or type 2 diabetes or gestational diabetes mellitus.
• A simple and effective approach to glycemia and weight management emphasizing portion control and healthy food choices may be considered for those with type 2 diabetes who are not taking insulin, who have limited health literacy or numeracy, or who are older and prone to hypoglycemia.
• Because diabetes nutrition therapy can result in cost savings B and improved outcomes (e.g., A1C reduction) A, MNT should be adequately reimbursed by insurance and other payers. E | A, B, E |
| **Energy balance** | • Weight loss (>5%) achievable by the combination of reduction of calorie intake and lifestyle modification benefits overweight or obese adults with type 2 diabetes and also those with prediabetes. Intervention programs to facilitate weight loss are recommended. | A |
| **Eating patterns and macronutrient distribution** | • There is no single ideal dietary distribution of calories among carbohydrates, fats, and proteins for people with diabetes; therefore, macronutrient distribution should be individualized while keeping total calorie and metabolic goals in mind.
• A variety of eating patterns are acceptable for the management of type 2 diabetes and prediabetes. | E, B |
| **Carbohydrates** | • Carbohydrate intake from vegetables, fruits, legumes, whole grains, and dairy products, with an emphasis on foods higher in fiber and lower in glycemic load, is preferred over other sources, especially those containing added sugars.
• For people with type 1 diabetes and those with type 2 diabetes who are prescribed a flexible insulin therapy program, education on how to use carbohydrate counting and in some cases fat and protein gram estimation to determine mealtime insulin dosing is recommended to improve glycemic control.
• For individuals whose daily insulin dosing is fixed, a consistent pattern of carbohydrate intake with respect to time and amount may be recommended to improve glycemic control and reduce the risk of hypoglycemia.
• People with diabetes and those at risk should avoid sugar-sweetened beverages in order to control weight and reduce their risk for CVD and fatty liver B and should minimize the consumption of foods with added sugar that have the capacity to displace healthier, more nutrient-dense food choices. A | B, A, B |
| **Protein** | • In individuals with type 2 diabetes, ingested protein appears to increase insulin response without increasing plasma glucose concentrations. Therefore, carbohydrate sources high in protein should be avoided when trying to treat or prevent hypoglycemia. | B |
| **Dietary fat** | • Data on the ideal total dietary fat content for people with diabetes are inconclusive, so an eating plan emphasizing elements of a Mediterranean-style diet rich in monounsaturated and polyunsaturated fats may be considered to improve glucose metabolism and lower CVD risk and can be an effective alternative to a diet low in total fat but relatively high in carbohydrates.
• Eating foods rich in long-chain n-3 fatty acids, such as fatty fish (EPA and DHA) and nuts and seeds (ALA), is recommended to prevent or treat CVD B; however, evidence does not support a beneficial role for the routine use of n-3 dietary supplements. A | B, A |
| **Micronutrients and herbal supplements** | • There is no clear evidence that dietary supplementation with vitamins, minerals, herbs, or spices can improve outcomes in people with diabetes who do not have underlying deficiencies, and are not generally recommended. There may be safety concerns regarding the long-term use of antioxidant supplements such as vitamins E and C and carotenoids. | C |
| **Alcohol** | • Adults with diabetes who drink alcohol should do so in moderation (no more than one drink per day for adult women and no more than two drinks per day for adult men).
• Alcohol consumption may place people with diabetes at increased risk for hypoglycemia, especially if taking insulin or insulin secretagogues. Education and awareness regarding the recognition and management of delayed hypoglycemia are warranted. | B, C |
| **Sodium** | • As for the general population, people with diabetes should limit sodium consumption to <2,300 mg/day, although further restriction may be indicated for those with both diabetes and hypertension. | B |

Continued on p. S41
portion sizes, to improve overall health and:
 ○ Achieve and maintain body weight goals
 ○ Attain individualized glycemic, blood pressure, and lipid goals
 ○ Delay or prevent the complications of diabetes

2. To address individual nutrition needs based on personal and cultural preferences, health literacy and numeracy, access to healthful foods, willingness and ability to make behavioral changes, and barriers to change

3. To maintain the pleasure of eating by providing nonjudgmental messages about food choices

4. To provide an individual with diabetes the practical tools for developing healthy eating patterns rather than focusing on individual macronutrients, micronutrients, or single foods

Eating Patterns, Macronutrient Distribution, and Meal Planning
Evidence suggests that there is not an ideal percentage of calories from carbohydrate, protein, and fat for all people with diabetes. Therefore, macronutrient distribution should be based on an individualized assessment of current eating patterns, preferences, and metabolic goals. Consider personal preferences (e.g., tradition, culture, religion, health beliefs and goals, economics) as well as metabolic goals when working with individuals to determine the best eating pattern for them (42,51). It is important that each member of the health care team be knowledgeable about nutrition therapy principles for people with all types of diabetes and be supportive of their implementation. Emphasis should be on healthful eating patterns containing nutrient-dense foods with less focus on specific nutrients (52). A variety of eating patterns are acceptable for the management of diabetes (51,53). The Mediterranean (54,55), Dietary Approaches to Stop Hypertension (DASH) (56–58), and plant-based diets (59,60) are all examples of healthful eating patterns that have shown positive results in research, but individualized meal planning should focus on personal preferences, needs, and goals.

The diabetes plate method is commonly used for providing basic meal planning guidance (61) as it provides a visual guide showing how to control calories (by featuring a smaller plate) and carbohydrates (by limiting them to what fits in one-quarter of the plate) and puts an emphasis on low-carbohydrate (or non-starchy) vegetables.

Weight Management
Management and reduction of weight is important for overweight and obese people with type 1 and type 2 diabetes. Lifestyle intervention programs should be intensive and have frequent follow-up to achieve significant reductions in excess body weight and improve clinical indicators. There is strong and consistent evidence that modest persistent weight loss can delay the progression from prediabetes to type 2 diabetes (51,62,63) (see Section 5 “Prevention or Delay of Type 2 Diabetes”) and is beneficial to the management of type 2 diabetes (see Section 7 “Obesity Management for the Treatment of Type 2 Diabetes”).

Studies of reduced calorie interventions show reductions in A1C of 0.3% to 2.0% in adults with type 2 diabetes, as well as improvements in medication doses and quality of life (51). Sustaining weight loss can be challenging (64) but has long-term benefits; maintaining weight loss for 5 years is associated with sustained improvements in A1C and lipid levels (65). Weight loss can be attained with lifestyle programs that achieve a 500–750 kcal/day energy deficit or provide ~1,200–1,500 kcal/day for women and 1,500–1,800 kcal/day for men, adjusted for the individual’s baseline body weight. For many obese individuals with type 2 diabetes, weight loss >5% is needed to produce beneficial outcomes in glycemic control, lipids, and blood pressure, and sustained weight loss of ≥7% is optimal (64).

The meal plans often used in intensive lifestyle management for weight loss may differ in the types of foods they restrict (e.g., high-fat vs. high-carbohydrate foods), but their emphasis should be on nutrient-dense foods, such as vegetables, fruits, legumes, low-fat dairy, lean meats, nuts, seeds, and whole grains, as well as on achieving the desired energy deficit (66–69). The approach to meal planning should be based on the patients’ health status and preferences.

Carbohydrates
Studies examining the ideal amount of carbohydrate intake for people with diabetes are inconclusive, although monitoring carbohydrate intake and considering the blood glucose response to dietary carbohydrate are key for improving postprandial glucose control (70,71). The literature concerning glycemic index and glycemic load in individuals with diabetes is complex often yielding mixed results, though in some studies lowering the glycemic load of consumed carbohydrates has demonstrated A1C reductions of ~0.2% to ~0.5% (72,73). Studies longer than 12 weeks report no significant influence of glycemic index or glycemic load independent of weight loss on A1C; however, mixed results have been reported for fasting glucose levels and endogenous insulin levels.

The role of low-carbohydrate diets in patients with diabetes remains unclear (72). Part of the confusion is due to the wide range of definitions for a low-carbohydrate diet (73,74). While benefits to low-carbohydrate diets have been described, improvements tend to be in the short term and, over time, these effects are not maintained (74–77). While some studies have shown modest benefits of very low–carbohydrate or ketogenic diets (less than 50-g carbohydrate per day) (78,79), this approach may only be appropriate for short-term implementation (up to 3–4 months) if desired by the patient, as there is little long-term research citing benefits or harm.

Most individuals with diabetes report a moderate intake of carbohydrate (44–46% of total calories) (51). Efforts to modify
habitual eating patterns are often unsuccessful in the long term; people generally go back to their usual macronutrient distribution (51). Thus, the recommended approach is to individualize meal plans to meet caloric goals with a macronutrient distribution that is more consistent with the individual’s usual intake to increase the likelihood for long-term maintenance.

As for all Americans, both children and adults with diabetes are encouraged to reduce intake of refined carbohydrates and added sugars and instead focus on carbohydrates from vegetables, legumes, fruits, dairy (milk and yogurt), and whole grains. The consumption of sugar-sweetened beverages and processed “low-fat” or “nonfat” food products with high amounts of refined grains and added sugars is strongly discouraged (80–82).

Individuals with type 1 or type 2 diabetes taking insulin at mealtime should be offered intensive and ongoing education on the need to couple insulin administration with carbohydrate intake. For people whose meal schedules or carbohydrate consumption is variable, regular counseling to help them understand the complex relationship between carbohydrate intake and insulin needs is important. In addition, education on using the insulin-to-carbohydrate ratios for meal planning can assist them with effectively modifying insulin dosing from meal to meal and improving glycemic control (44,51,70,83–85). Individuals who consume meals containing more protein and fat than usual may also need to make mealtime insulin dose adjustments to compensate for delayed postprandial glycemic excursions (86–88). For individuals on a fixed daily insulin schedule, meal planning should emphasize a relatively fixed carbohydrate consumption pattern with respect to both time and amount (42). By contrast, a simpler diabetes meal planning approach emphasizing portion control and healthful food choices may be better suited for some older individuals, those with cognitive dysfunction, and those for whom there are concerns over health literacy and numeracy (42–44,47,70,83). The modified plate method (which uses measuring cups to assist with portion measurement) may be an effective alternative to carbohydrate counting for some patients to improve glycemia (61).

Protein

There is no evidence that adjusting the daily level of protein intake (typically 1–1.5 g/kg body weight/day or 15–20% total calories) will improve health in individuals without diabetic kidney disease, and research is inconclusive regarding the ideal amount of dietary protein to optimize either glycemic control or cardiovascular disease (CVD) risk (72). Therefore, protein intake goals should be individualized based on current eating patterns. Some research has found successful management of type 2 diabetes with meal plans including slightly higher levels of protein (20–30%), which may contribute to increased satiety (57).

For those with diabetic kidney disease (with albuminuria and/or reduced estimated glomerular filtration rate), dietary protein should be maintained at the recommended daily allowance of 0.8 g/kg body weight/day. Reducing the amount of dietary protein below the recommended daily allowance is not recommended because it does not alter glycemic measures, cardiovascular risk measures, or the rate at which glomerular filtration rate declines (89,90).

In individuals with type 2 diabetes, protein intake may enhance or increase the insulin response to dietary carbohydrates (91). Therefore, carbohydrate sources high in protein should not be used to treat or prevent hypoglycemia due to the potential concurrent rise in endogenous insulin.

Fats

The ideal amount of dietary fat for individuals with diabetes is controversial. The National Academy of Medicine has defined an acceptable macronutrient distribution for total fat for all adults to be 20–35% of total calorie intake (92). The type of fats consumed is more important than total amount of fat when looking at metabolic goals and CVD risk, and it is recommended that the percentage of total calories from saturated fats should be limited (93–97). Multiple randomized controlled trials including patients with type 2 diabetes have reported that a Mediterranean-style eating pattern (93,98–103), rich in polyunsaturated and monounsaturated fats, can improve both glycemic control and blood lipids. However, supplements do not seem to have the same effects as their whole food counterparts. A systematic review concluded that dietary supplements with n-3 fatty acids did not improve glycemic control in individuals with type 2 diabetes (72). Randomized controlled trials also do not support recommending n-3 supplements for primary or secondary prevention of CVD (104–108). People with diabetes should be advised to follow the guidelines for the general population for the recommended intakes of saturated fat, dietary cholesterol, and trans fat (94). In general, trans fats should be avoided. In addition, as saturated fats are progressively decreased in the diet, they should be replaced with unsaturated fats and not with refined carbohydrates (102).

Sodium

As for the general population, people with diabetes are advised to limit their sodium consumption to <2,300 mg/day (42). Lowering sodium intake (i.e., 1,500 mg/day) may improve blood pressure in certain circumstances (109,110). However, other studies (111,112) suggest caution for universal sodium restriction to 1,500 mg in people with diabetes. Sodium intake recommendations should take into account palatability, availability, affordability, and the difficulty of achieving low-sodium recommendations in a nutritionally adequate diet (113).

Micronutrients and Supplements

There continues to be no clear evidence of benefit from herbal or nonherbal (i.e., vitamin or mineral) supplementation for people with diabetes without underlying deficiencies (42). Metformin is associated with vitamin B12 deficiency, with a recent report from the Diabetes Prevention Program Outcomes Study (DPPOS) suggesting that periodic testing of vitamin B12 levels should be considered in patients taking metformin, particularly in those with anemia or peripheral neuropathy (114). Routine supplementation with antioxidants, such as vitamins E and C and carotene, is not advised due to lack of evidence of efficacy and concern related to long-term safety. In addition, there is insufficient evidence to support the routine use of herbs and micronutrients, such as cinnamon (115) and vitamin D (116), to improve glycemic control in people with diabetes (42,117).

Alcohol

Moderate alcohol intake does not have major detrimental effects on long-term blood glucose control in people with
diabetes. Risks associated with alcohol consumption include hypoglycemia (particularly for those using insulin or insulin secretagogue therapies), weight gain, and hyperglycemia (for those consuming excessive amounts) (42,117). People with diabetes can follow the same guidelines as those without diabetes if they choose to drink. For women, no more than one drink per day; for men, no more than two drinks per day is recommended (one drink is equal to a 12-oz beer, 5-oz glass of wine, or 1.5-oz distilled spirits).

Nonnutritive Sweeteners
For some people with diabetes who are accustomed to sugar-sweetened products, nonnutritive sweeteners (containing few or no calories) may be an acceptable substitute for nutritive sweeteners (those containing calories such as sugar, honey, agave syrup) when consumed in moderation. While use of nonnutritive sweeteners does not appear to have a significant effect on glycemic control (118), they can reduce overall calorie and carbohydrate intake (51). Most systematic reviews and meta-analyses show benefits for nonnutritive sweetener use in weight loss (119,120); however, some research suggests an association with weight gain (121). Regulatory agencies set acceptable daily intake levels for each nonnutritive sweetener, defined as the amount that can be safely consumed over a person’s lifetime (42,110).

PHYSICAL ACTIVITY

Recommendations
- Children and adolescents with type 1 or type 2 diabetes or prediabetes should engage in 60 min/day or more of moderate- or vigorous-intensity aerobic activity, with vigorous muscle-strengthening and bone-strengthening activities at least 3 days/week.
- Most adults with type 1 and type 2 diabetes should engage in 150 min or more of moderate-to-vigorous-intensity aerobic activity per week, spread over at least 3 days/week, with no more than 2 consecutive days without activity. Shorter durations (minimum 75 min/week) of vigorous-intensity or interval training may be sufficient for younger and more physically fit individuals.
- Adults with type 1 and type 2 diabetes should engage in 2–3 sessions/week of resistance exercise on nonconsecutive days.
- All adults, and particularly those with type 2 diabetes, should decrease the amount of time spent in daily sedentary behavior. Prolonged sitting should be interrupted every 30 min for blood glucose benefits, particularly in adults with type 2 diabetes.
- Flexibility training and balance training are recommended 2–3 times/week for older adults with diabetes. Yoga and tai chi may be included based on individual preferences to increase flexibility, muscular strength, and balance.

Physical activity is a general term that includes all movement that increases energy use and is an important part of the diabetes management plan. Exercise is a more specific form of physical activity that is structured and designed to improve physical fitness. Both physical activity and exercise are important. Exercise has been shown to improve blood glucose control, reduce cardiovascular risk factors, contribute to weight loss, and improve well-being. Physical activity is as important for those with type 1 diabetes as it is for the general population, but its specific role in the prevention of diabetes complications and the management of blood glucose is not as clear as it is for those with type 2 diabetes.

Structured exercise interventions of at least 8 weeks’ duration have been shown to lower A1C by an average of 0.66% in people with type 2 diabetes, even without a significant change in BMI (122). There are also considerable data for the health benefits (e.g., increased cardiovascular fitness, greater muscle strength, improved insulin sensitivity, etc.) of regular exercise for those with type 1 diabetes (123). Higher levels of exercise intensity are associated with greater improvements in A1C and in fitness (124). Other benefits include slowing the decline in mobility among overweight patients with diabetes (125). The ADA position statement “Physical Activity/Exercise and Diabetes” reviews the evidence for the benefits of exercise in people with diabetes (126).

Exercise and Children
All children, including children with diabetes or prediabetes, should be encouraged to engage in regular physical activity. Children should engage in at least 60 min of moderate-to-vigorous aerobic activity every day with muscle- and bone-strengthening activities for at least 3 days per week (127). In general, youth with type 1 diabetes benefit from being physically active, and an active lifestyle should be recommended to all (128).

Frequency and Type of Physical Activity
People with diabetes should perform aerobic and resistance exercise regularly (126). Aerobic activity bouts should ideally last at least 10 min, with the goal of ≥30 min/day or more, most days of the week for adults with type 2 diabetes. Daily exercise, or at least not allowing more than 2 days to elapse between exercise sessions, is recommended to decrease insulin resistance, regardless of diabetes type (129,130). Over time, activities should progress in intensity, frequency, and/or duration to at least 150 min/week of moderate-intensity exercise. Adults able to run at 6 miles/h (9.7 km/h) for at least 25 min can benefit sufficiently from shorter-duration vigorous-intensity activity (75 min/week). Many adults, including most with type 2 diabetes, would be unable or unwilling to participate in such intense exercise and should engage in moderate exercise for the recommended duration. Adults with diabetes should engage in 2–3 sessions/week of resistance exercise on nonconsecutive days (131). Although heavier resistance training with free weights and weight machines may improve glycemic control and strength (132), resistance training of any intensity is recommended to improve strength, balance, and the ability to engage in activities of daily living throughout the life span.

Recent evidence supports that all individuals, including those with diabetes, should be encouraged to reduce the amount of time spent being sedentary (e.g., working at a computer, watching TV) by breaking up bouts of sedentary activity (>30 min) by briefly standing, walking, or performing other light physical activities (133,134). Avoiding extended sedentary periods may help prevent type 2 diabetes for those at risk and may also aid in glycemic control for those with diabetes.
Physical Activity and Glycemic Control

Clinical trials have provided strong evidence for the A1C-lowering value of resistance training in older adults with type 2 diabetes (135) and for an additive benefit of combined aerobic and resistance exercise in adults with type 2 diabetes (136). If not contraindicated, patients with type 2 diabetes should be encouraged to do at least two weekly sessions of resistance exercise (exercise with free weights or weight machines), with each session consisting of at least one set (group of consecutive repetitive exercise motions) of five or more different resistance exercises involving the large muscle groups (135).

For type 1 diabetes, although exercise in general is associated with improvement in disease status, care needs to be taken in titrating exercise with respect to glycemic management. Each individual with type 1 diabetes has a variable glycemic response to exercise. This variability should be taken into consideration when recommending the type and duration of exercise for a given individual (123).

Women with preexisting diabetes, particularly type 2 diabetes, and those at risk for or presenting with gestational diabetes mellitus should be advised to engage in regular moderate physical activity prior to and during their pregnancies as tolerated (126).

Pre-exercise Evaluation

As discussed more fully in Section 9 “Cardiovascular Disease and Risk Management,” the best protocol for assessing asymptomatic patients with diabetes for coronary artery disease remains unclear. The ADA consensus report “Screening for Coronary Artery Disease in Patients With Diabetes” (137) concluded that routine testing is not recommended. However, providers should perform a careful history, assess cardiovascular risk factors, and be aware of the atypical presentation of coronary artery disease in patients with diabetes. Certainly, high-risk patients should be encouraged to start with short periods of low-intensity exercise and slowly increase the intensity and duration as tolerated. Providers should assess patients for conditions that might contraindicate certain types of exercise or predispose to injury, such as uncontrolled hypertension, untreated proliferative retinopathy, autonomic neuropathy, peripheral neuropathy, and a history of foot ulcers or Charcot foot. The patient’s age and previous physical activity level should be considered. The provider should customize the exercise regimen to the individual’s needs. Those with complications may require a more thorough evaluation prior to beginning an exercise program (123).

Hypoglycemia

In individuals taking insulin and/or insulin secretagogues, physical activity may cause hypoglycemia if the medication dose or carbohydrate consumption is not altered. Individuals on these therapies may need to ingest some added carbohydrate if pre-exercise glucose levels are <100 mg/dL (5.6 mmol/L), depending on whether they are able to lower insulin doses during the workout (such as with an insulin pump or reduced pre-exercise insulin dosage), the time of day exercise is done, and the intensity and duration of the activity (123,126). In some patients, hypoglycemia after exercise may occur and last for several hours due to increased insulin sensitivity. Hypoglycemia is less common in patients with diabetes who are not treated with insulin or insulin secretagogues, and no routine preventive measures for hypoglycemia are usually advised in these cases. Intense activities may actually raise blood glucose levels instead of lowering them, especially if pre-exercise glucose levels are elevated (138).

Exercise in the Presence of Specific Long-term Complications of Diabetes Retinopathy

If proliferative diabetic retinopathy or severe nonproliferative diabetic retinopathy is present, then vigorous-intensity aerobic or resistance exercise may be contraindicated because of the risk of triggering vitreous hemorrhage or retinal detachment (139). Consultation with an ophthalmologist prior to engaging in an intense exercise regimen may be appropriate.

Peripheral Neuropathy

Decreased pain sensation and a higher pain threshold in the extremities result in an increased risk of skin breakdown, infection, and Charcot joint destruction with some forms of exercise. Therefore, a thorough assessment should be done to ensure that neuropathy does not alter kinesthetic or proprioceptive sensation during physical activity, particularly in those with more severe neuropathy. Studies have shown that moderate-intensity walking may not lead to an increased risk of foot ulcers or re-ulceration in those with peripheral neuropathy who use proper footwear (140). In addition, 150 min/week of moderate exercise was reported to improve outcomes in patients with prediabetic neuropathy (141). All individuals with peripheral neuropathy should wear proper footwear and examine their feet daily to detect lesions early. Anyone with a foot injury or open sore should be restricted to non-weight-bearing activities.

Autonomic Neuropathy

Autonomic neuropathy can increase the risk of exercise-induced injury or adverse events through decreased cardiac responsiveness to exercise, postural hypotension, impaired thermoregulation, impaired night vision due to impaired papillary reaction, and greater susceptibility to hypoglycemia (142). Cardiovascular autonomic neuropathy is also an independent risk factor for cardiovascular death and silent myocardial ischemia (143). Therefore, individuals with diabetic autonomic neuropathy should undergo cardiac investigation before beginning physical activity more intense than that to which they are accustomed.

Diabetic Kidney Disease

Physical activity can acutely increase urinary albumin excretion. However, there is no evidence that vigorous-intensity exercise increases the rate of progression of diabetic kidney disease, and there appears to be no need for specific exercise restrictions for people with diabetic kidney disease in general (139).

SMOKING CESSATION: TOBACCO AND e-CIGARETTES

Recommendations

- Advise all patients not to use cigarettes and other tobacco products A or e-cigarettes. E
- Include smoking cessation counseling and other forms of treatment as a routine component of diabetes care. B

Results from epidemiological, case-control, and cohort studies provide convincing evidence to support the causal link between cigarette smoking and health risks (144). Recent data show tobacco use is higher among adults with chronic conditions (145). Smokers with diabetes (and people with diabetes exposed to secondhand smoke) have a heightened risk
of CVD, premature death, and microvascular complications. Smoking may have a role in the development of type 2 diabetes (146,147).

The routine and thorough assessment of tobacco use is essential to prevent smoking or encourage cessation. Numerous large randomized clinical trials have demonstrated the efficacy and cost-effectiveness of brief counseling in smoking cessation, including the use of telephone quit lines, in reducing tobacco use. For the patient motivated to quit, the addition of pharmacologic therapy to counseling is more effective than either treatment alone (148). Special considerations should include assessment of level of nicotine dependence, which is associated with difficulty in quitting and relapse (149). Although some patients may gain weight in the period shortly after smoking cessation (150), recent research has demonstrated that this weight gain does not diminish the substantial CVD benefit realized from smoking cessation (151). One study in smokers with newly diagnosed type 2 diabetes found that smoking cessation was associated with amelioration of metabolic parameters and reduced blood pressure and albuminuria at 1 year (152).

Nonsmokers should be advised not to use e-cigarettes. There are no rigorous studies that have demonstrated that e-cigarettes are a healthier alternative to smoking or that e-cigarettes can facilitate smoking cessation. More extensive research of their short- and long-term effects is needed to determine their safety and their cardiopulmonary effects in comparison with smoking and standard approaches to smoking cessation (153–155).

PSYCHOSOCIAL ISSUES

Recommendations

- Psychosocial care should be integrated with a collaborative, patient-centered approach and provided to all people with diabetes, with the goals of optimizing health outcomes and health-related quality of life. A
- Psychosocial screening and follow-up may include, but are not limited to, attitudes about diabetes, expectations for medical management and outcomes, affect or mood, general and diabetes-related quality of life, available resources (financial, social, and emotional), and psychiatric history. E
- Providers should consider assessment for symptoms of diabetes distress, depression, anxiety, disordered eating, and cognitive capacities using patient-appropriate standardized and validated tools at the initial visit, at periodic intervals, and when there is a change in disease, treatment, or life circumstance. Including caregivers and family members in this assessment is recommended. B
- Consider screening older adults (aged ≥65 years) with diabetes for cognitive impairment and depression. B

Please refer to the ADA position statement “Psychosocial Care for People With Diabetes” for a list of assessment tools and additional details (156).

Complex environmental, social, behavioral, and emotional factors, known as psychosocial factors, influence living with diabetes, both type 1 and type 2, and achieving satisfactory medical outcomes and psychological well-being. Thus, individuals with diabetes and their families are challenged with complex, multifaceted issues when integrating diabetes care into daily life.

Emotional well-being is an important part of diabetes care and self-management. Psychological and social problems can impair the individual’s (157–159) or family’s (160) ability to carry out diabetes care tasks and therefore potentially compromise health status. There are opportunities for the clinician to routinely assess psychosocial status in a timely and efficient manner for referral to appropriate services. A systematic review and meta-analysis showed that psychosocial interventions modestly but significantly improved A1C (standardized mean difference −0.29%) and mental health outcomes (161). However, there was a limited association between the effects on A1C and mental health, and no intervention characteristics predicted benefit on both outcomes.

Screening

Key opportunities for psychosocial screening occur at diabetes diagnosis, during regularly scheduled management visits, during hospitalizations, with new onset of complications, or when problems with glucose control, quality of life, or self-management are identified (1). Patients are likely to exhibit psychological vulnerability at diagnosis, when their medical status changes (e.g., end of the honeymoon period), when the need for intensified treatment is evident, and when complications are discovered.

Providers can start with informal verbal inquiries, for example, by asking if there have been changes in mood during the past 2 weeks or since their last visit. Providers should consider asking if there are new or different barriers to treatment and self-management, such as feeling overwhelmed or stressed by diabetes or other life stressors. Standardized and validated tools for psychosocial monitoring and assessment can also be used by providers (156), with positive findings leading to referral to a mental health provider specializing in diabetes for comprehensive evaluation, diagnosis, and treatment.

Diabetes Distress

Recommendation

- Routinely monitor people with diabetes for diabetes distress, particularly when treatment targets are not met and/or at the onset of diabetes complications. B

Diabetes distress (DD) is very common and is distinct from other psychological disorders (162–164). DD refers to significant negative psychological reactions related to emotional burdens and worries specific to an individual’s experience in having to manage a severe, complicated, and demanding chronic disease such as diabetes (163–165). The constant behavioral demands (medication dosing, frequency, and titration; monitoring blood glucose, food intake, eating patterns, and physical activity) of diabetes self-management and the potential or actuality of disease progression are directly associated with reports of DD (163). The prevalence of DD is reported to be 18–45% with an incidence of 38–48% over 18 months (165). In the second Diabetes Attitudes, Wishes and Needs (DAWN2) study, significant DD was reported by 45% of the participants, but only 24% reported that their health care teams asked them how diabetes affected their lives (162). High levels of DD significantly impact medication-taking behaviors and are linked to higher A1C, lower self-efficacy, and poorer dietary and exercise
behaviors (16,163,165). DSMES has been shown to reduce DD (16). It may be helpful to provide counseling regarding ex-pected diabetes-related versus generalized psychological distress at diagnosis and when disease state or treatment changes (166).

DD should be routinely monitored (167) using patient-appropriate validated measures (156). If DD is identified, the person should be referred for specific diabetes education to address areas of diabetes self-care that are most relevant to the patient and impact clinical management. People whose self-care remains impaired after tai-lored diabetes education should be referred by their care team to a behavioral health provider for evaluation and treatment.

Other psychosocial issues known to affect self-management and health outcomes include attitudes about the illness, expectations for medical management and outcomes, available resources (financial, social, and emotional) (168), and psychiatric history. For additional information on psychiatric comorbidities (depression, anxiety, disordered eating, and serious mental illness), please refer to Section 3 “Comprehensive Medical Evaluation and Assessment of Comorbidities.”

Referral to a Mental Health Specialist

Indications for referral to a mental health specialist familiar with diabetes management may include positive screening for overall stress related to work-life balance, DD, diabetes management difficulties, depression, anxiety, disordered eating, and cognitive dysfunction (see Table 4.2 for a complete list). It is preferable to incorporate psychosocial assessment and treatment into routine care rather than waiting for a specific problem or deterio-ration in metabolic or psychological status to occur (25,162). Providers should identify behavioral and mental health providers, ideally those who are knowl-edgeable about diabetes treatment and the psychosocial aspects of diabetes, to whom they can refer patients. The ADA provides a list of mental health providers who have received additional education in diabetes at the ADA Mental Health Provider Directory (professional.diabetes.org/ada-mental-health-provider-directory). Ideally, psychosocial care providers should be embedded in diabetes care settings. Although the clinician may not feel qualified to treat psychological problems (169), optimizing the patient-provider rela-tionship as a foundation may increase the likelihood of the patient accepting referral for other services. Collaborative care interventions and a team approach have demonstrated efficacy in diabetes self-management and psychosocial func-tioning (16).

References

ketogenic diet and lifestyle recommendations versus a plate method diet in overweight individuals with type 2 diabetes: a randomized controlled trial. J Med Internet Res 2017;19:e36
105. Crochemore ICC, Souza AFP, de Souza ACF, Rosado EL. Consequences of dietary fat substitution of omega-3 polyunsaturated fatty acids with saturated fatty acids in the prevention of dyslipidemia. Lipids Health Dis 2011;10:105
106. Holman RR, Paul S, Farmer A, Tucker L, Stratton IM, Neil HA; Atorvastatin in Factorial with Omega-3-EE90 Risk Reduction in Diabetes Study Group. Atorvastatin in Factorial with Omega-3 EE90 Risk Reduction in Diabetes (AFORRD): a

microalbuminuria in newly diagnosed type 2 diabetes mellitus: a 1-year prospective study. Metabolism 2011;60:1456–1464
5. Prevention or Delay of Type 2 Diabetes: Standards of Medical Care in Diabetes—2018

The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

For guidelines related to screening for increased risk for type 2 diabetes (prediabetes), please refer to Section 2 “Classification and Diagnosis of Diabetes.”

Recommendations
- At least annual monitoring for the development of diabetes in those with prediabetes is suggested. **E**
- Patients with prediabetes should be referred to an intensive behavioral lifestyle intervention program modeled on the Diabetes Prevention Program to achieve and maintain 7% loss of initial body weight and increase moderate-intensity physical activity (such as brisk walking) to at least 150 min/week. **A**
- Technology-assisted tools including Internet-based social networks, distance learning, and mobile applications that incorporate bidirectional communication may be useful elements of effective lifestyle modification to prevent diabetes. **B**
- Given the cost-effectiveness of diabetes prevention, such intervention programs should be covered by third-party payers. **B**

Screening for prediabetes and type 2 diabetes risk through an informal assessment of risk factors (**Table 2.3**) or with an assessment tool, such as the American Diabetes Association risk test (**Fig. 2.1**), is recommended to guide providers on whether performing a diagnostic test for prediabetes (**Table 2.4**) and previously undiagnosed type 2 diabetes (**Table 2.2**) is appropriate (see Section 2 “Classification and Diagnosis of Diabetes”). Those determined to be at high risk for type 2 diabetes, including people with A1C 5.7–6.4% (39–47 mmol/mol), impaired glucose tolerance, or impaired fasting glucose, are ideal candidates for diabetes prevention efforts. Using A1C to screen for prediabetes may be problematic in the presence of certain hemoglobinopathies or conditions that affect red blood cell turnover. See Section 2 “Classification and Diagnosis of Diabetes” and
Section 6 “Glycemic Targets” for additional details on the appropriate use of the A1C test.

At least annual monitoring for the development of diabetes in those with prediabetes is suggested.

LIFESTYLE INTERVENTIONS

The Diabetes Prevention Program

The strongest evidence for diabetes prevention comes from the Diabetes Prevention Program (DPP) (1). The DPP demonstrated that an intensive lifestyle intervention could reduce the incidence of type 2 diabetes by 58% over 3 years. Follow-up of three large studies of lifestyle intervention for diabetes prevention has shown sustained reduction in the rate of conversion to type 2 diabetes: 43% reduction at 20 years in the Da Qing study (2), 43% reduction at 7 years in the Finnish Diabetes Prevention Study (DPS) (3), and 34% reduction at 10 years (4) and 27% reduction at 15 years (5) in the U.S. Diabetes Prevention Program Outcomes Study (DPPOS).

The two major goals of the DPP intensive, behavioral, lifestyle intervention were to achieve and maintain a minimum of 7% weight loss and 150 min of physical activity per week similar in intensity to brisk walking. The DPP lifestyle intervention was a goal-based intervention: all participants were given the same weight loss and physical activity goals, but individualization was permitted in the specific methods used to achieve the goals (6).

The 7% weight loss goal was selected because it was feasible to achieve and maintain and likely to lessen the risk of developing diabetes. Participants were encouraged to achieve the 7% weight loss during the first 6 months of the intervention. The recommended pace of weight loss was 1–2 lb/week. Calorie goals were calculated by estimating the daily calories needed to maintain the participant’s initial weight and subtracting 500–1,000 calories/day (depending on initial body weight). The initial focus was on reducing total dietary fat. After several weeks, the concept of calorie balance and the need to restrict calories as well as fat was introduced (6).

The goal for physical activity was selected to approximate at least 700 kcal/week expenditure from physical activity. For ease of translation, this goal was described as at least 150 min of moderate-intensity physical activity per week similar in intensity to brisk walking. Participants were encouraged to distribute their activity throughout the week with a minimum frequency of three times per week with at least 10 min per session. A maximum of 75 min of strength training could be applied toward the total 150 min/week physical activity goal (6).

To implement the weight loss and physical activity goals, the DPP used an individual model of treatment rather than a group-based approach. This choice was based on a desire to intervene before participants had the possibility of developing diabetes or losing interest in the program. The individual approach also allowed for tailoring of interventions to reflect the diversity of the population (6).

The DPP intervention was administered as a structured core curriculum followed by a more flexible maintenance program of individual sessions, group classes, motivational campaigns, and restart opportunities. The 16-session core curriculum was completed within the first 24 weeks of the program and included sections on lowering calories, increasing physical activity, self-monitoring, maintaining healthy lifestyle behaviors, and psychological, social, and motivational challenges. For further details on the core curriculum sessions, refer to ref. 6.

Nutrition

Reducing caloric intake is of paramount importance for those at high risk for developing type 2 diabetes, though recent evidence suggests that the quality of fats consumed in the diet is more important than the total quantity of dietary fat (7–9). For example, the Mediterranean diet, which is relatively high in monounsaturated fats, may help to prevent type 2 diabetes (10–12).

Whereas overall healthy low-calorie eating patterns should be encouraged, there is also some evidence that particular dietary components impact diabetes risk. Higher intakes of nuts (13), berries (14), yogurts (15), coffee, and tea (16) are associated with reduced diabetes risk. Conversely, red meats and sugar-sweetened beverages are associated with an increased risk of type 2 diabetes (8).

As is the case for those with diabetes, individualized medical nutrition therapy (see Section 4 “Lifestyle Management” for more detailed information) is effective in lowering A1C in individuals diagnosed with prediabetes (17).

Physical Activity

Just as 150 min/week of moderate-intensity physical activity, such as brisk walking, showed beneficial effects in those with prediabetes (1), moderate-intensity physical activity has been shown to improve insulin sensitivity and reduce abdominal fat in children and young adults (18,19). On the basis of these findings, providers are encouraged to promote a DPP-style program, including its focus on physical activity, to all individuals who have been identified to be at an increased risk of type 2 diabetes. In addition to aerobic activity, an exercise regimen designed to prevent diabetes may include resistance training (6,20). Breaking up prolonged sedentary time may also be encouraged, as it is associated with moderately lower postprandial glucose levels (21,22). The preventative effects of exercise appear to extend to the prevention of gestational diabetes mellitus (GDM) (23).

Technology Assistance to Deliver Lifestyle Interventions

Information technology platforms may effectively deliver the core components of the DPP (24–26), lowering weight, reducing risk for diabetes and cardiovascular disease, and achieving cost savings (27,28). Recent studies support content delivery through virtual small groups (29), Internet-driven social networks (30,31), cell phones, and other mobile devices. Mobile applications for weight loss and diabetes prevention have been validated for their ability to reduce A1C in the setting of prediabetes (31). The Centers for Disease Control and Prevention (CDC) Diabetes Prevention Recognition Program (DPRP) (http://www.cdc.gov/diabetes/prevention/recognition/index.htm) has begun to certify electronic and mobile health-based modalities as effective vehicles for DPP-based interventions that may be considered alongside more traditional face-to-face and coach-driven programs. A recent study showed that an all-mobile approach to administering DPP content can be effective as a prevention tool, at least over the short term, in overweight and obese individuals at high risk for diabetes (32).

Cost-effectiveness

A cost-effectiveness model suggested that the lifestyle intervention used in the DPP was cost-effective (33). Actual cost data from the DPP and DPPOS confirmed this (34). Group delivery of DPP content in community or primary care settings has the potential to reduce overall program costs while still producing...
weight loss and diabetes risk reduction (35–37). The use of community health workers to support DPP efforts has been shown to be effective with cost savings (38) (see Section 1 “Improving Care and Promoting Health in Populations” for more information). The CDC helps to coordinate the National Diabetes Prevention Program (National DPP), a resource designed to bring evidence-based lifestyle change programs for preventing type 2 diabetes to communities (http://www.cdc.gov/diabetes/prevention/index.htm). Early results from the CDC’s National DPP during the first 4 years of implementation are promising (39). On 7 July 2016, the Centers for Medicare and Medicaid Services (CMS) proposed expanded Medicare reimbursement coverage for DPP programs in an effort to expand preventive services using a cost-effective model with proposed implementation in 2018 (https://innovation.cms.gov/initiatives/medicare-reimbursement-coverage-for-DPP).

PHARMACOLOGIC INTERVENTIONS

Recommendations
- Metformin therapy for prevention of type 2 diabetes should be considered in those with prediabetes, especially for those with BMI \(\geq 35 \) kg/m\(^2\), those aged <60 years, and women with prior gestational diabetes mellitus.
- Long-term use of metformin may be associated with biochemical vitamin B12 deficiency, and periodic measurement of vitamin B12 levels should be considered in metformin-treated patients, especially in those with anemia or peripheral neuropathy.

Pharmacologic agents including metformin, α-glucosidase inhibitors, orlistat, glucagon-like peptide 1 (GLP-1) receptor agonists, and thiazolidinediones have each been shown to decrease incident diabetes to various degrees in those with prediabetes in research studies (1,40–45), though none are approved by the U.S. Food and Drug Administration specifically for diabetes prevention. One has to balance the risk/benefit of each medication. Metformin has the strongest evidence base and demonstrated long-term safety as pharmacologic therapy for diabetes prevention (45). For other drugs, cost, side effects, and durable efficacy require consideration.

Metformin was overall less effective than lifestyle modification in the DPP and DPPOS, though group differences declined over time (5) and metformin may be cost-saving over a 10-year period (34). It was as effective as lifestyle modification in participants with BMI \(\geq 35 \) kg/m\(^2\) but not significantly better than placebo in those over 60 years of age (1). In the DPP, for women with history of GDM, metformin and intensive lifestyle modification led to an equivalent 50% reduction in diabetes risk (46), and both interventions remained highly effective during a 10-year follow-up period (47). Metformin should be recommended as an option for high-risk individuals (e.g., those with a history of GDM or those with BMI \(\geq 35 \)). Consider monitoring B12 levels in those taking metformin chronically to check for possible deficiency (see Section B “Pharmacologic Approaches to Glycemic Treatment” for more details).

PREVENTION OF CARDIOVASCULAR DISEASE

Recommendation
- Screening for and treatment of modifiable risk factors for cardiovascular disease is suggested for those with prediabetes.

People with prediabetes often have other cardiovascular risk factors, including hypertension and dyslipidemia, and are at increased risk for cardiovascular disease (48). Although treatment goals for people with prediabetes are the same as for the general population (49), increased vigilance is warranted to identify and treat these and other cardiovascular risk factors (e.g., smoking).

DIABETES SELF-MANAGEMENT EDUCATION AND SUPPORT

Recommendation
- Diabetes self-management education and support programs may be appropriate venues for people with prediabetes to receive education and support to develop and maintain behaviors that can prevent or delay the development of type 2 diabetes.

As for those with established diabetes, the standards for diabetes self-management education and support (see Section 4 “Lifestyle Management”) can also apply to people with prediabetes. Currently, there are significant barriers to the provision of education and support to those with prediabetes. However, the strategies for supporting successful behavior change and the healthy behaviors recommended for people with prediabetes are comparable to those for diabetes. Although reimbursement remains a barrier, studies show that providers of diabetes self-management education and support are particularly well equipped to assist people with prediabetes in developing and maintaining behaviors that can prevent or delay the development of diabetes (17,50).

References
11. Salas-Salvadó J, Guasch-Ferré M, Lee CH, Estruch R, Clíss CB, Ros E. Protective effects of...
the Mediterranean diet on type 2 diabetes and metabolic syndrome. J Nutr 2016;146:920S–927S
6. Glycemic Targets: Standards of Medical Care in Diabetes—2018

The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

ASSESSMENT OF GLYCEMIC CONTROL

Patient self-monitoring of blood glucose (SMBG) and A1C are available to health care providers and patients to assess the effectiveness and safety of a management plan on glycemic control. Continuous glucose monitoring (CGM) also has an important role in assessing the effectiveness and safety of treatment in subgroups of patients with type 1 diabetes and in selected patients with type 2 diabetes. Data indicate similar A1C and safety with the use of CGM compared with SMBG (1).

Recommendations

- Most patients using intensive insulin regimens (multiple-dose insulin or insulin pump therapy) should perform self-monitoring of blood glucose (SMBG) prior to meals and snacks, at bedtime, occasionally postprandially, prior to exercise, when they suspect low blood glucose, after treating low blood glucose until they are normoglycemic, and prior to critical tasks such as driving. B
- When prescribed as part of a broad educational program, SMBG may help to guide treatment decisions and/or self-management for patients taking less frequent insulin injections B or noninsulin therapies. E
- When prescribing SMBG, ensure that patients receive ongoing instruction and regular evaluation of SMBG technique, SMBG results, and their ability to use SMBG data to adjust therapy. E
- When used properly, continuous glucose monitoring (CGM) in conjunction with intensive insulin regimens is a useful tool to lower A1C in adults with type 1 diabetes who are not meeting glycemic targets. A
- CGM may be a useful tool in those with hypoglycemia unawareness and/or frequent hypoglycemic episodes. C
- Given the variable adherence to CGM, assess individual readiness for continuing CGM use prior to prescribing. E
Self-monitoring of Blood Glucose

Major clinical trials of insulin-treated patients have included SMBG as part of multifactorial interventions to demonstrate the benefit of intensive glycemic control on diabetes complications. SMBG is thus an integral component of effective therapy (2). SMBG allows patients to evaluate their individual response to therapy and assess whether glycemic targets are being achieved. Integrating SMBG results into diabetes management can be a useful tool for guiding medical nutrition therapy and physical activity, preventing hypoglycemia, and adjusting medications (particularly prandial insulin doses). Among patients with type 1 diabetes, there is a correlation between greater SMBG frequency and lower A1C (3). The patient’s specific needs and goals should dictate SMBG frequency and timing.

Optimization

SMBG accuracy is dependent on the instrument and user, so it is important to evaluate each patient’s monitoring technique, both initially and at regular intervals thereafter. Optimal use of SMBG requires proper review and interpretation of the data, by both the patient and the provider. Among patients who check their blood glucose at least once daily, many report taking no action when results are high or low. In a yearlong study of insulin-naive patients with suboptimal initial glycemic control, a group trained in structured SMBG (a paper tool was used at least quarterly to collect and interpret 7-point SMBG profiles taken on 3 consecutive days) reduced their A1C by 0.3 percentage points more than the control group (4). Patients should be taught how to use SMBG data to adjust food intake, exercise, or pharmacologic therapy to achieve specific goals. The ongoing need for and frequency of SMBG should be reevaluated at each routine visit to avoid overuse (5–7). SMBG is especially important for insulin-treated patients to monitor for and prevent asymptomatic hypoglycemia and hyperglycemia. Patients should be advised against purchasing or reselling preowned or secondhand test strips, as these may give incorrect results. Only unopened vials of glucose test strips should be used to ensure SMBG accuracy.

For Patients on Intensive Insulin Regimens

Most patients using intensive insulin regimens (multiple-dose insulin or insulin pump therapy) should perform SMBG prior to meals and snacks, at bedtime, occasionally postprandially, prior to exercise, when they suspect low blood glucose, after treating low blood glucose until they are normoglycemic, and prior to critical tasks such as driving. For many patients, this will require testing 6–10 (or more) times daily, although individual needs may vary. A database study of almost 27,000 children and adolescents with type 1 diabetes showed that, after adjustment for multiple confounders, increased daily frequency of SMBG was significantly associated with lower A1C (−0.2% per additional test per day) and with fewer acute complications (8).

For Patients Using Basal Insulin and/or Oral Agents

The evidence is insufficient regarding when to prescribe SMBG and how often testing is needed for patients who do not use intensive insulin regimens, such as those with type 2 diabetes using oral agents and/or basal insulin. For patients using basal insulin, assessing fasting glucose with SMBG to inform dose adjustments to achieve blood glucose targets results in lower A1Cs (9,10).

For individuals with type 2 diabetes on less intensive insulin therapy, more frequent SMBG (e.g., fasting, before/after meals) may be helpful, as increased frequency is associated with meeting A1C targets (11).

Several randomized trials have called into question the clinical utility and cost-effectiveness of routine SMBG in noninsulin-treated patients (12–15). Meta-analyses have suggested that SMBG can reduce A1C by 0.25–0.3% at 6 months (16,17), but the effect was attenuated at 12 months in one analysis (16). A key consideration is that performing SMBG alone does not lower blood glucose levels. To be useful, the information must be integrated into clinical and self-management plans.

Continuous Glucose Monitoring

CGM measures interstitial glucose (which correlates well with plasma glucose), and most CGM devices include alarms for hypoglycemia and hyperglycemic excursions. The intermittent or “flash” CGM device, very recently approved for adult use only (18), differs from previous CGM devices. Specifically, it does not have alarms, does not require calibration with SMBG, and does not communicate continuously (only on demand). It is reported to have a lower cost than traditional systems. A study in adults with well-controlled type 1 diabetes found that flash CGM users spent less time in hypoglycemia than those using SMBG (19). However, due to significant differences between flash CGM and other CGM devices, more discussion is needed on outcomes and regarding specific recommendations.

For most CGM systems, confirmatory SMBG is required to make treatment decisions, though a randomized controlled trial of 226 adults suggested that an enhanced CGM device could be used safely and effectively without regular confirmatory SMBG in patients with well-controlled type 1 diabetes at low risk of severe hypoglycemia (1). Two CGM devices are now approved by the U.S. Food and Drug Administration (FDA) for making treatment decisions without SMBG confirmation (18,20), including the flash CGM device. Although performed with older generation CGM devices, a 26-week randomized trial of 322 patients with type 1 diabetes showed that adults aged ≥25 years using intensive insulin therapy and CGM experienced a 0.5% reduction in A1C (from 7.6% to 7.1% [−60 mmol/mol to 54 mmol/mol]) compared with those using intensive insulin therapy with SMBG (21). The greatest predictor of A1C lowering for all age-groups was frequency of sensor use, which was highest in those aged ≥25 years and lower in younger age-groups. Two clinical trials in adults with type 1 diabetes not meeting A1C targets and using multiple daily injections also found that the use of CGM compared with usual care resulted in lower A1C levels than SMBG over 24–26 weeks (22,23). Other small, short-term studies have demonstrated similar A1C reductions using CGM compared with SMBG in adults with A1C levels ≥7% (53 mmol/mol) (24,25).

A registry study of 17,317 participants confirmed that more frequent CGM use is associated with lower A1C (26), whereas another study showed that children with >70% sensor use (i.e., ≥5 days per
A1C reflects average glycemia over approximately 3 months and has strong predictive value for diabetes complications (39,40). Thus, A1C testing should be performed routinely in all patients with diabetes—at initial assessment and as part of continuing care. Measurement approximately every 3 months determines whether patients’ glycemic targets have been reached and maintained. The frequency of A1C testing should depend on the clinical situation, the treatment regimen, and the clinician’s judgment. The use of point-of-care A1C testing may provide an opportunity for more timely treatment changes.

A1C Testing

Recommendations
- Perform the A1C test at least two times a year in patients who are meeting treatment goals (and who have stable glycemic control).
- Perform the A1C test quarterly in patients whose therapy has changed or who are not meeting glycemic goals.
- Point-of-care testing for A1C provides the opportunity for more timely treatment changes.

A1C Testing

A1C and Mean Glucose

Table 6.1 shows the correlation between A1C levels and mean glucose levels based on two studies: the international A1C-Derived Average Glucose (ADAG) study, which assessed the correlation between A1C and frequent SMBG and CGM in 507 adults (83% non-Hispanic whites) with type 1, type 2, and no diabetes (43), and an empirical study of the average blood glucose levels at premeal, postmeal, and bedtime associated with specified A1C levels using data from the ADAG trial (37). The American Diabetes Association (ADA) and the American Association for Clinical Chemistry have determined that the correlation ($r = 0.92$) in the ADAG trial is strong enough to justify reporting both the A1C result and the estimated average glucose (eAG) result when a clinician orders the A1C test. Clinicians should note that the mean plasma glucose numbers in the table are based on $–2,700$ readings per A1C in the ADAG trial. In a recent report, mean glucose measured with CGM versus central laboratory–measured A1C in 387 participants in three randomized trials demonstrated that A1C may underestimate or overestimate mean glucose. Thus, as suggested, a patient’s CGM profile has considerable potential for optimizing his or her glycemic management (42).

A1C Limitations

The A1C test is an indirect measure of average glycemia and, as such, is subject to limitations. As with any laboratory test, there is variability in the measurement of A1C. Although such variability is less on an intrapatient basis than that of blood glucose measurements, clinicians should exercise judgment when using A1C as the sole basis for assessing glycemic control, particularly if the result is close to the threshold that might prompt a change in medication therapy. Conditions that affect red blood cell turnover (hemolytic and other anemias, recent blood transfusion, use of drugs that stimulate erythropoiesis, end-stage kidney disease, and pregnancy) may result in discrepancies between the A1C result and the patient’s true mean glycemia. Hemoglobin variants must be considered, particularly when the A1C result does not correlate with the patient’s SMBG levels. Options for monitoring include more frequent and/or different timing of SMBG or CGM use. Other measures of average glycemia such as fructosamine and 1,5-anhydroglucitol are available, but their translation into average glucose levels and their prognostic significance are not as clear as for A1C. Though some variability exists among different individuals, generally the association between mean glucose and A1C within an individual correlates over time (42).

A1C does not provide a measure of glycemic variability or hypoglycemia. For patients prone to glycemic variability, especially patients with type 1 diabetes or type 2 diabetes with severe insulin deficiency, glycemic control is best evaluated by the combination of results from A1C and SMBG or CGM. A1C may also confirm the accuracy of the patient’s meter (or the patient’s reported SMBG results) and the adequacy of the SMBG testing schedule.

A1C Testing

Recommendations
- Perform the A1C test at least two times a year in patients who are meeting treatment goals (and who have stable glycemic control).
- Perform the A1C test quarterly in patients whose therapy has changed or who are not meeting glycemic goals.
- Point-of-care testing for A1C provides the opportunity for more timely treatment changes.
Table 6.1—Mean glucose levels for specified A1C levels (37,43)

<table>
<thead>
<tr>
<th>A1C</th>
<th>Mean plasma glucose*</th>
<th>Mean fasting glucose</th>
<th>Mean premeal glucose</th>
<th>Mean postmeal glucose</th>
<th>Mean bedtime glucose</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>mg/dL</td>
<td>mmol/L</td>
<td>mg/dL</td>
<td>mmol/L</td>
<td>mg/dL</td>
</tr>
<tr>
<td>6 (42)</td>
<td>126 (100–152)</td>
<td>7.0 (5.5–8.5)</td>
<td>118 (115–121)</td>
<td>6.5 (6.4–6.7)</td>
<td>144 (139–148)</td>
</tr>
<tr>
<td>5.5–6.49 (37–47)</td>
<td>122 (117–127)</td>
<td>6.8 (6.5–7.0)</td>
<td>152 (143–162)</td>
<td>8.4 (8.2–8.7)</td>
<td>176 (170–183)</td>
</tr>
<tr>
<td>6.5–6.99 (47–53)</td>
<td>142 (135–150)</td>
<td>7.9 (7.5–8.3)</td>
<td>155 (148–161)</td>
<td>8.6 (8.2–8.9)</td>
<td>189 (180–197)</td>
</tr>
<tr>
<td>7 (53)</td>
<td>154 (123–185)</td>
<td>8.6 (6.8–10.3)</td>
<td>167 (157–177)</td>
<td>9.3 (8.7–9.8)</td>
<td>206 (195–217)</td>
</tr>
<tr>
<td>7.0–7.49 (53–58)</td>
<td>152 (143–162)</td>
<td>8.4 (7.9–9.0)</td>
<td>152 (147–157)</td>
<td>8.4 (8.2–8.7)</td>
<td>176 (170–183)</td>
</tr>
<tr>
<td>7.5–7.99 (58–64)</td>
<td>167 (157–177)</td>
<td>9.3 (8.7–9.8)</td>
<td>155 (148–161)</td>
<td>8.6 (8.2–8.9)</td>
<td>189 (180–197)</td>
</tr>
<tr>
<td>8 (64)</td>
<td>183 (147–217)</td>
<td>10.2 (8.1–12.1)</td>
<td>178 (164–192)</td>
<td>9.9 (9.1–10.7)</td>
<td>179 (167–191)</td>
</tr>
<tr>
<td>8.0–8.5 (64–69)</td>
<td>178 (164–192)</td>
<td>9.9 (9.1–10.7)</td>
<td>179 (167–191)</td>
<td>9.9 (9.3–10.6)</td>
<td>206 (195–217)</td>
</tr>
</tbody>
</table>

Data in parentheses represent 95% CI, unless otherwise noted. A calculator for converting A1C results into eAG, in either mg/dL or mmol/L, is available at http://professional.diabetes.org/eAG. *These estimates are based on ADAG data of ~2,700 glucose measurements over 3 months per A1C measurement in 507 adults with type 1, type 2, and no diabetes. The correlation between A1C and average glucose was 0.92 (43).
can be achieved without significant hypoglycemia or other adverse effects of treatment (i.e., polypharmacy). Appropriate patients might include those with short duration of diabetes, type 2 diabetes treated with lifestyle or metformin only, long life expectancy, or no significant cardiovascular disease. C

• Less stringent A1C goals (such as <8% [64 mmol/mol]) may be appropriate for patients with a history of severe hypoglycemia, limited life expectancy, advanced microvascular or macrovascular complications, extensive comorbid conditions, or long-standing diabetes in whom the goal is difficult to achieve despite diabetes self-management education, appropriate glucose monitoring, and effective doses of multiple glucose-lowering agents including insulin. B

A1C and Microvascular Complications

Hyperglycemia defines diabetes, and glycemic control is fundamental to diabetes management. The Diabetes Control and Complications Trial (DCCT) (2), a prospective randomized controlled trial of intensive versus standard glucose control in patients with type 1 diabetes, showed definitively that better glycemic control is associated with significantly decreased rates of development and progression of microvascular (retinopathy [51], neuropathy, and diabetic kidney disease) complications. Follow-up of the DCCT cohorts in the Epidemiology of Diabetes Interventions and Complications (EDIC) study (52) demonstrated persistence of these microvascular benefits despite the fact that the glycemic separation between the treatment groups diminished and disappeared during follow-up.

The Kumamoto Study (53) and UK Prospective Diabetes Study (UKPDS) (54,55) confirmed that intensive glycemic control significantly decreased rates of microvascular complications in patients with type 2 diabetes. Long-term follow-up of the UKPDS cohorts showed enduring effects of early glycemic control on most microvascular complications (56).

Therefore, achieving A1C targets of <7% [53 mmol/mol] has been shown to reduce microvascular complications of diabetes. Epidemiological analyses of the DCCT (2) and UKPDS (57) demonstrate a curvilinear relationship between A1C and microvascular complications. Such analyses suggest that, on a population level, the greatest number of complications will be averted by taking patients from very poor control to fair/good control. These analyses also suggest that further lowering of A1C from 7% to 6% [53 mmol/mol to 42 mmol/mol] is associated with further reduction in the risk of microvascular complications, although the absolute risk reductions become much smaller. Given the substantially increased risk of hyperglycemia in type 1 diabetes trials and with polypharmacy in type 2 diabetes, the risks of lower glycemic targets outweigh the potential benefits on microvascular complications.

ACCORD, ADVANCE, and VADT

Three landmark trials (Action to Control Cardiovascular Risk in Diabetes [ACCORD], Action in Diabetes and Vascular Disease: Preterax and Diamicron MR Controlled Evaluation [ADVANCE], and Veterans Affairs Diabetes Trial [VADT]) showed that lower A1C levels were associated with reduced onset or progression of some microvascular complications (58–60).

The concerning mortality findings in the ACCORD trial (61), discussed below, and the relatively intense efforts required to achieve near-euglycemia should also be considered when setting glycemic targets. However, on the basis of physician judgment and patient preferences, select patients, especially those with little comorbidity and long life expectancy, may benefit from adopting more intensive glycemic targets (e.g., A1C target <6.5% [48 mmol/mol]) as long as significant hypoglycemia does not become a barrier.

A1C and Cardiovascular Disease Outcomes

Cardiovascular Disease and Type 1 Diabetes

Cardiovascular disease (CVD) is a more common cause of death than microvascular complications in populations with diabetes. There is evidence for a cardiovascular benefit of intensive glycemic control after long-term follow-up of cohorts treated early in the course of type 1 diabetes. In the DCCT, there was a trend toward lower risk of CVD events with intensive control. In the 9-year post-DCCT follow-up of the EDIC cohort, participants previously randomized to the intensive arm had a significant 57% reduction in the risk of nonfatal myocardial infarction (MI), stroke, or cardiovascular death compared with those previously randomized to the standard arm (62). The benefit of intensive glycemic control in this cohort with type 1 diabetes has been shown to persist for several decades (63) and to be associated with a modest reduction in all-cause mortality (64).

Cardiovascular Disease and Type 2 Diabetes

In type 2 diabetes, there is evidence that more intensive treatment of glycemia in newly diagnosed patients may reduce long-term CVD rates. During the UKPDS, there was a 16% reduction in CVD events (combined fatal or nonfatal MI and sudden death) in the intensive glycemic control arm that did not reach statistical significance (P = 0.052), and there was no suggestion of benefit on other CVD outcomes (e.g., stroke). However, after 10 years of observational follow-up, those originally randomized to intensive glycemic control had significant long-term reductions in MI (15% with sulfonylurea or insulin as initial pharmacotherapy, 33% with metformin as initial pharmacotherapy) and in all-cause mortality (13% and 27%, respectively) (56).

ACCORD, ADVANCE, and VADT suggested no significant reduction in CVD outcomes with intensive glycemic control in participants followed for 3.5–5.6 years who had more advanced type 2 diabetes than UKPDS participants. All three trials were conducted in relatively older participants with longer known duration of diabetes (mean duration 8–11 years) and either CVD or multiple cardiovascular risk factors. The target A1C among intensive control subjects was <6% (42 mmol/mol) in ACCORD, <6.5% (48 mmol/mol) in ADVANCE, and a 1.5% reduction in A1C compared with control subjects in VADT, with achieved A1C of 6.4% vs. 7.5% (46 mmol/mol vs. 58 mmol/mol) in ACCORD, 6.5% vs. 7.3% (48 mmol/mol vs. 56 mmol/mol) in ADVANCE, and 6.9% vs. 8.4% (52 mmol/mol vs. 68 mmol/mol) in VADT. Details of these studies are reviewed extensively in “Intensive Glycemic Control and the Prevention of Cardiovascular Events: Implications of the ACCORD, ADVANCE, and VA Diabetes Trials” (65).

The glycemic control comparison in ACCORD was halted early due to an increased mortality rate in the intensive compared with the standard treatment arm (1.41% vs. 1.14% per year; hazard ratio 1.22 [95% CI 1.01–1.46]), with a similar increase in cardiovascular deaths. Analysis
of the ACCORD data did not identify a clear explanation for the excess mortality in the intensive treatment arm (61).

Longer-term follow-up has shown no evidence of cardiovascular benefit or harm in the ADVANCE trial (66). The end-stage renal disease rate was lower in the intensive treatment group over follow-up. However, 10-year follow-up of the VADT cohort (67) showed a reduction in the risk of cardiovascular events (52.7 [control group] vs. 44.1 [intervention group]) events per 1,000 person-years) with no benefit in cardiovascular or overall mortality. Heterogeneity of mortality effects across studies was noted, which may reflect differences in glycemic targets, therapeutic approaches, and population characteristics (68).

Mortality findings in ACCORD (61) and subgroup analyses of VADT (69) suggest that the potential risks of intensive glycemic control may outweigh its benefits in higher-risk patients. In all three trials, severe hypoglycemia was significantly more likely in participants who were randomly assigned to the intensive glycemic control arm. Those patients with long duration of diabetes, a known history of hypoglycemia, advanced atherosclerosis, or advanced age/fragility may benefit from less aggressive targets (70,71).

Providers should be vigilant in preventing hypoglycemia and should not aggressively attempt to achieve near-normal A1C levels in patients in whom such targets cannot be safely and reasonably achieved. Severe or frequent hypoglycemia is an absolute indication for the modification of treatment regimens, including setting higher glycemic goals.

Many factors, including patient preferences, should be taken into account when developing a patient’s individualized goals (Table 6.2).

A1C and Glycemic Targets
Numerous aspects must be considered when setting glycemic targets. The ADA proposes optimal targets, but each target must be individualized to the needs of each patient and his or her disease factors.

When possible, such decisions should be made with the patient, reflecting his or her preferences, needs, and values. Fig. 6.1 is not designed to be applied rigidly but to be used as a broad construct to guide clinical decision-making (72), in both type 1 and type 2 diabetes.

Recommended glycemic targets for many nonpregnant adults are shown in Table 6.2. The recommendations include blood glucose levels that appear to correlate with achievement of an A1C of <7% (53 mmol/mol). The issue of preprandial versus postprandial SMBG targets is complex (73). Elevated postchallenge (2-h oral glucose tolerance test) glucose values have been associated with increased cardiovascular risk independent of fasting plasma glucose in some epidemiological studies, but intervention trials have not shown postprandial glucose to be a cardiovascular risk factor independent of A1C. In subjects with diabetes, surrogate measures of vascular pathology, such as endothelial dysfunction, are negatively affected by postprandial hyperglycemia. It is clear that postprandial hyperglycemia, like preprandial hyperglycemia, contributes to elevated A1C levels, with its relative contribution being greater at A1C levels that are closer to 7% (53 mmol/mol). However, outcome studies have clearly shown A1C to be the primary predictor of complications, and landmark trials of glycemic control such as the DCCT and UKPDS relied overwhelmingly on preprandial SMBG. Additionally, a randomized controlled trial in patients with known CVD found no CVD benefit of insulin regimens targeting postprandial glucose compared with those targeting preprandial glucose (74). Therefore, it is reasonable for postprandial testing to be recommended for individuals who have premeal glucose values within target but have A1C values above target. Measuring postprandial plasma glucose 1–2 h after the start of a meal and using treatments aimed at

Table 6.2—Summary of glycemic recommendations for many nonpregnant adults with diabetes

<table>
<thead>
<tr>
<th>A1C</th>
<th><7.0% (53 mmol/mol)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preprandial capillary plasma glucose</td>
<td>80–130 mg/dL* (4.4–7.2 mmol/L)</td>
</tr>
<tr>
<td>Peak postprandial capillary plasma glucose†</td>
<td><180 mg/dL* (10.0 mmol/L)</td>
</tr>
</tbody>
</table>

*More or less stringent glycemic goals may be appropriate for individual patients. Goals should be individualized based on duration of diabetes, age/life expectancy, comorbid conditions, known CVD or advanced microvascular complications, hypoglycemia unawareness, and individual patient considerations. †Postprandial glucose may be targeted if A1C goals are not met despite reaching preprandial glucose goals. Postprandial glucose measurements should be made 1–2 h after the beginning of the meal, generally peak levels in patients with diabetes.

Approach to the Management of Hyperglycemia

![Figure 6.1](image)

Figure 6.1—Depicted are patient and disease factors used to determine optimal A1C targets. Characteristics and predicaments toward the left justify more stringent efforts to lower A1C; those toward the right suggest less stringent efforts. Adapted with permission from Inzucchi et al. (72).
reducing postprandial plasma glucose values to <180 mg/dL (10.0 mmol/L) may help to lower A1C.

An analysis of data from 470 participants in the ADAG study (237 with type 1 diabetes and 147 with type 2 diabetes) found that actual average glucose levels associated with conventional A1C targets were higher than older DCCT and ADA targets (Table 6.1) (37,39). These findings support that premeal glucose targets may be relaxed without undermining overall glycemic control as measured by A1C. These data prompted the revision in the ADA-recommended premeal glucose target to 80–130 mg/dL (4.4–7.2 mmol/L) but did not affect the definition of hypoglycemia.

HYPOGLYCEMIA

Recommendations

- Individuals at risk for hypoglycemia should be asked about symptomatic and asymptomatic hypoglycemia at each encounter.
- Glucose (15–20 g) is the preferred treatment for the conscious individual with blood glucose ≤70 mg/dL (3.9 mmol/L), although any form of carbohydrate that contains glucose may be used. Fifteen minutes after treatment, if SMBG shows continued hypoglycemia, the treatment should be repeated. Once SMBG returns to normal, the individual should consume a meal or snack to prevent recurrence of hypoglycemia.
- Glucagon should be prescribed for all individuals at increased risk of clinically significant hypoglycemia, defined as blood glucose <54 mg/dL (3.0 mmol/L), so it is available should it be needed. Caregivers, school personnel, or family members of these individuals should know where it is and when and how to administer it. Glucagon administration is not limited to health care professionals.

Hypoglycemia is the major limiting factor in the glycemic management of type 1 and type 2 diabetes. Recommendations from the International Hypoglycemia Study Group regarding the classification of hypoglycemia in clinical trials are outlined in Table 6.3 (75). Of note, this classification scheme considers a blood glucose <54 mg/dL (3.0 mmol/L) detected by SMBG, CGM (for at least 20 min), or laboratory measurement of plasma glucose as sufficiently low to indicate clinically significant hypoglycemia that should be included in reports of clinical trials of glucose-lowering drugs for the treatment of diabetes (75). However, a hypoglycemia alert value of ≤70 mg/dL (3.9 mmol/L) can be important for therapeutic dose adjustment of glucose-lowering drugs in clinical care and is often related to symptomatic hypoglycemia. Severe hypoglycemia is defined as severe cognitive impairment requiring assistance from another person for recovery (76).

Symptoms of hypoglycemia include, but are not limited to, shakiness, irritability, confusion, tachycardia, and hunger. Hypoglycemia may be inconvenient or frightening to patients with diabetes. Severe hypoglycemia may be recognized or unrecognized and can progress to loss of consciousness, seizure, coma, or death. It is reversed by administration of rapid-acting glucose or glucagon. Clinically significant hypoglycemia can cause acute harm to the person with diabetes or others, especially if it causes falls, motor vehicle accidents, or other injury. A large cohort study suggested that among older adults with type 2 diabetes, a history of severe hypoglycemia was associated with greater risk of dementia (77). Conversely, in a sub-study of the ACCORD trial, cognitive impairment at baseline or decline in cognitive function during the trial was significantly associated with subsequent episodes of severe hypoglycemia (78). Evidence from DCCT/EDIC, which involved adolescents and younger adults with type 1 diabetes, found no association between frequency of severe hypoglycemia and cognitive decline (79), as discussed in Section 12 “Children and Adolescents.”

Severe hypoglycemia was associated with mortality in participants in both the standard and the intensive glycemia arms of the ACCORD trial, but the relationships between hypoglycemia, achieved A1C, and treatment intensity were not straightforward. An association of severe hypoglycemia with mortality was also found in the ADVANCE trial (80). An association between self-reported severe hypoglycemia and 5-year mortality has also been reported in clinical practice (81).

Young children with type 1 diabetes and the elderly, including those with type 1 and type 2 diabetes (77,82), are noted as particularly vulnerable to clinically significant hypoglycemia because of their reduced ability to recognize hypoglycemic symptoms and effectively communicate their needs. Individualized glucose targets, patient education, dietary intervention (e.g., bedtime snack to prevent overnight hypoglycemia when specifically needed to treat

<table>
<thead>
<tr>
<th>Hypoglycemia alert value (level 1)</th>
<th>Glycemic criteria</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥70 mg/dL (3.9 mmol/L)</td>
<td>Sufficiently low for treatment with fast-acting carbohydrate and dose adjustment of glucose-lowering therapy</td>
<td></td>
</tr>
</tbody>
</table>

| Clinically significant hypoglycemia (level 2) | <54 mg/dL (3.0 mmol/L) | Sufficiently low to indicate serious, clinically important hypoglycemia |

| Severe hypoglycemia (level 3) | No specific glucose threshold | Hypoglycemia associated with severe cognitive impairment requiring external assistance for recovery |

*Adapted from ref. 75.
low blood glucose), exercise management, medication adjustment, glucose monitoring, and routine clinical surveillance may improve patient outcomes (76). CGM with automated low glucose suspend has been shown to be effective in reducing hypoglycemia in type 1 diabetes (34). For patients with type 1 diabetes with severe hypoglycemia and hypoglycemia unawareness that persists despite medical treatment, human islet transplantation may be an option, but the approach remains experimental (83,84).

In 2015, the ADA changed its preprandial glycemic target from 70–130 mg/dL (3.9–7.2 mmol/L) to 80–130 mg/dL (4.4–7.2 mmol/L). This change reflects the results of the ADAG study, which demonstrated that higher glycemic targets corresponded to A1C goals (37). An additional goal of raising the lower range of the glycemic target was to limit overtreatment and provide a safety margin in patients titrating glucose-lowering drugs such as insulin to glycemic targets.

Hypoglycemia Treatment
Providers should continue to counsel patients to treat hypoglycemia with fast-acting carbohydrates at the hypoglycemia alert value of 70 mg/dL (3.9 mmol/L) or less. Hypoglycemia treatment requires ingestion of glucose- or carbohydrate-containing foods. The acute glycemic response correlates better with the glucose content of food than with the carbohydrate content of food. Pure glucose is the preferred treatment, but any form of carbohydrate that contains glucose will raise blood glucose. Added fat may retard and then prolong the acute glycemic response. In type 2 diabetes, ingested protein may increase insulin response without increasing plasma glucose concentrations (85). Therefore, carbohydrate sources high in protein should not be used to treat or prevent hypoglycemia. Ongoing insulin activity or insulin secretagogues may lead to recurrent hypoglycemia unless further food is ingested after recovery. Once the glucose returns to normal, the individual should be counseled to eat a meal or snack to prevent recurrent hypoglycemia.

Glucagon
The use of glucagon is indicated for the treatment of hypoglycemia in people unable or unwilling to consume carbohydrates by mouth. Those in close contact with, or having custodial care of, people with hypoglycemia-prone diabetes (family members, roommates, school personnel, child care providers, correctional institution staff, or coworkers) should be instructed on the use of glucagon kits including where the kit is and when and how to administer glucagon. An individual does not need to be a health care professional to safely administer glucagon. Care should be taken to ensure that glucagon kits are not expired.

Hypoglycemia Prevention
Hypoglycemia prevention is a critical component of diabetes management. SMBG and, for some patients, CGM are essential tools to assess therapy and detect incipient hypoglycemia. Patients should understand situations that increase their risk of hypoglycemia, such as fasting for tests or procedures, delayed meals, during or after intense exercise, and during sleep. Hypoglycemia may increase the risk of harm to self or others, such as with driving. Teaching people with diabetes to balance insulin use and carbohydrate intake and exercise are necessary, but these strategies are not always sufficient for prevention.

In type 1 diabetes and severely insulin-deficient type 2 diabetes, hypoglycemia unawareness (or hypoglycemia-associated autonomic failure) can severely compromise stringent diabetes control and quality of life. This syndrome is characterized by deficient counterregulatory hormone release, especially in older adults, and a diminished autonomic response, which both are risk factors for, and caused by, hypoglycemia. A corollary to this "vicious cycle" is that several weeks of avoidance of hypoglycemia has been demonstrated to improve counterregulation and hypoglycemia awareness in many patients (86). Hence, patients with one or more episodes of clinically significant hypoglycemia may benefit from at least short-term relaxation of glycemic targets.

INTERCURRENT ILLNESS
For further information on management of patients with hyperglycemia in the hospital, please refer to Section 14 “Diabetes Care in the Hospital.”

Stressful events (e.g., illness, trauma, surgery, etc.) may worsen glycemic control and precipitate diabetic ketoacidosis or nonketotic hyperosmolar state, life-threatening conditions that require immediate medical care to prevent complications and death. Any condition leading to deterioration in glycemic control necessitates more frequent monitoring of blood glucose; ketosis-prone patients also require urine or blood ketone monitoring. If accompanied by ketosis, vomiting, or alteration in the level of consciousness, marked hyperglycemia requires temporary adjustment of the treatment regimen and immediate interaction with the diabetes care team. The patient treated with noninsulin therapies or medical nutrition therapy alone may temporarily require insulin. Adequate fluid and caloric intake must be ensured. Infection or dehydration is more likely to necessitate hospitalization of the person with diabetes than the person without diabetes.

A physician with expertise in diabetes management should treat the hospitalized patient. For further information on the management of diabetic ketoacidosis and the hyperglycemic nonketotic hyperosmolar state, please refer to the ADA consensus report “Hyperglycemic Crises in Adult Patients With Diabetes” (87).

References
5. Gellad WF, Zhao X, Thorpe CT, Mor MK, Good CB, Fine MJ. Dual use of Department of Veterans Affairs and Medicare benefits and use of test strips in veterans with type 2 diabetes mellitus. JAMA Intern Med 2015;175:26–34.
9. Rosenstock J, Davies M, Home PD, Larsen J, Koenen C, Schernthaner G. A randomised, 52-week,
treat-to-target trial comparing insulin detemir with insulin glargine when administered as add-on to glucose-lowering drugs in insulin-naive people with type 2 diabetes. Diabetologia 2008;51:408–416

32. Selvin E. Are there clinical implications of racial differences in HbA1c? A difference, to be a difference, must make a difference. Diabetes Care 2016;39:1462–1467

42. Beck RW, Connor CG, Mullen DM, Wesley BM, Bergsten RM. The fallacy of average: how using HbA1c alone to assess glycemic control can be misleading. Diabetes Care 2017;40:994–999

44. Selvin E. Are there clinical implications of racial differences in HbA1c? A difference, to be a difference, must make a difference. Diabetes Care 2016;39:1462–1467

73. American Diabetes Association. Postprandial glucose concentrations of less than 3.0 mmol/L (54 mg/dL) should be reported in clinical trials: a joint position statement of the American Diabetes Association and The Endocrine Society. Diabetes Care 2013;36:1384–1395.
7. Obesity Management for the Treatment of Type 2 Diabetes: Standards of Medical Care in Diabetes—2018

The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

There is strong and consistent evidence that obesity management can delay the progression from prediabetes to type 2 diabetes (1,2) and may be beneficial in the treatment of type 2 diabetes (3–8). In overweight and obese patients with type 2 diabetes, modest and sustained weight loss has been shown to improve glycemic control and to reduce the need for glucose-lowering medications (3–5). Small studies have demonstrated that in obese patients with type 2 diabetes more extreme dietary energy restriction with very-low-calorie diets can reduce A1C to <6.5% (48 mmol/mol) and fasting glucose to <126 mg/dL (7.0 mmol/L) in the absence of pharmacologic therapy or ongoing procedures (7,9,10). Weight loss–induced improvements in glycemia are most likely to occur early in the natural history of type 2 diabetes when obesity-associated insulin resistance has caused reversible β-cell dysfunction but insulin secretory capacity remains relatively preserved (5,8,10,11). The goal of this section is to provide evidence-based recommendations for dietary, pharmacologic, and surgical interventions for obesity management as treatments for hyperglycemia in type 2 diabetes.

ASSESSMENT

Recommendation
- At each patient encounter, BMI should be calculated and documented in the medical record.

At each routine patient encounter, BMI should be calculated as weight divided by height squared (kg/m²) (12). BMI should be classified to determine the presence of overweight or obesity, discussed with the patient, and documented in the patient record. In Asian Americans, the BMI cutoff points to define overweight and obesity are lower than in other populations (Table 7.1) (13,14). Providers should advise overweight and obese patients that, in general, higher BMIs increase the risk of...
cardiovascular disease and all-cause mortality. Providers should assess each patient’s readiness to achieve weight loss and jointly determine weight loss goals and intervention strategies. Strategies include diet, physical activity, behavioral therapy, pharmacologic therapy, and metabolic surgery (Table 7.1). The latter two strategies may be prescribed for carefully selected patients as adjuncts to diet, physical activity, and behavioral therapy.

DIET, PHYSICAL ACTIVITY, AND BEHAVIORAL THERAPY

Recommendations
- Diet, physical activity, and behavioral therapy designed to achieve >5% weight loss should be prescribed for overweight and obese patients with type 2 diabetes ready to achieve weight loss. A
- Such interventions should be high intensity (≥16 sessions in 6 months) and focus on diet, physical activity, and behavioral strategies to achieve a 500–750 kcal/day energy deficit. A
- Diets should be individualized, as those that provide the same caloric restriction but differ in protein, carbohydrate, and fat content are equally effective in achieving weight loss. A
- For patients who achieve short-term weight-loss goals, long-term (≥1 year) comprehensive weight maintenance programs should be prescribed. Such programs should provide at least monthly contact and encourage ongoing monitoring of body weight (weekly or more frequently), continued consumption of a reduced-calorie diet, and participation in high levels of physical activity (200–300 min/week). A
- To achieve weight loss of >5%, short-term (3-month) interventions that use very-low-calorie diets (≤800 kcal/day) and total meal replacements may be prescribed for carefully selected patients by trained practitioners in medical care settings with close medical monitoring. To maintain weight loss, such programs must incorporate long-term comprehensive weight maintenance counseling. B

Among overweight or obese patients with type 2 diabetes and inadequate glycemic, blood pressure, and lipid control and/or other obesity-related medical conditions, lifestyle changes that result in modest and sustained weight loss produce clinically meaningful reductions in blood glucose, A1C, and triglycerides (3–5). Greater weight loss produces even greater benefits, including reductions in blood pressure, improvements in LDL and HDL cholesterol, and reductions in the need for medications to control blood glucose, blood pressure, and lipids (3–5).

Look AHEAD Trial

Although the Action for Health in Diabetes (Look AHEAD) trial did not show that an intensive lifestyle intervention reduced cardiovascular events in overweight or obese adults with type 2 diabetes (15), it did show the feasibility of achieving and maintaining long-term weight loss in patients with type 2 diabetes. In the Look AHEAD intensive lifestyle intervention group, mean weight loss was 4.7% at 8 years (16). Approximately 50% of intensive lifestyle intervention participants lost ≥5%, and 27% lost ≥10% of their initial body weight at 8 years (16). Participants randomly assigned to the intensive lifestyle group achieved equivalent risk factor control but required fewer glucose-, blood pressure-, and lipid-lowering medications than those randomly assigned to standard care. Secondary analyses of the Look AHEAD trial and other large cardiovascular outcome studies document other benefits of weight loss in patients with type 2 diabetes, including improvements in mobility, physical and sexual functioning, and health-related quality of life (17). A post hoc analysis of the Look AHEAD study suggests that heterogeneous treatment effects may have been present. Participants who had moderately or poorly controlled diabetes (A1C 6.8% or higher) as well as both those with well-controlled diabetes (A1C less than 6.8%) and good self-reported health were found to have significantly reduced cardiovascular events with intensive lifestyle intervention during follow-up (18).

Lifestyle Interventions

Weight loss can be attained with lifestyle programs that achieve a 500–750 kcal/day energy deficit or provide approximately 1,200–1,500 kcal/day for women and 1,500–1,800 kcal/day for men, adjusted for the individual’s baseline body weight. Although benefits may be seen as little as 5% weight loss (19), sustained weight loss of ≥7% is optimal.

These diets may differ in the types of foods they restrict (such as high-fat or high-carbohydrate foods) but are effective if they create the necessary energy deficit (12,20–22). Use of meal replacement plans prescribed by trained practitioners, with close patient monitoring, can be beneficial. Within the intensive lifestyle intervention group of the Look AHEAD trial, for example, use of a partial meal replacement plan was associated with improvements in diet quality (23). The diet choice should be based on the patient’s health status and preferences.

Intensive behavioral lifestyle interventions should include ≥16 sessions in 6 months and focus on diet, physical activity, and behavioral strategies to achieve an ∼500–750 kcal/day energy deficit. Interventions should be provided by trained interventionists in either individual or group sessions (19).

Overweight and obese patients with type 2 diabetes who have lost weight during the 6-month intensive behavioral lifestyle intervention should be enrolled in long-term (≥1 year) comprehensive
weight loss maintenance programs that provide at least monthly contact with a trained interventionist and focus on ongoing monitoring of body weight (weekly or more frequently), continued consumption of a reduced-calorie diet, and participation in high levels of physical activity (200–300 min/week [24]). Some commercial and proprietary weight loss programs have shown promising weight loss results [25].

When provided by trained practitioners in medical care settings with close medical monitoring, short-term (3-month) interventions that use very-low-calorie diets (defined as 800 kcal/day) and total meal replacements may achieve greater short-term weight loss (10–15%) than intensive behavioral lifestyle interventions that typically achieve 5% weight loss. However, weight regain following the cessation of very-low-calorie diets is greater than following intensive behavioral lifestyle interventions unless a long-term comprehensive weight loss maintenance program is provided [26,27].

PHARMACOTHERAPY

Recommendations

- When choosing glucose-lowering medications for overweight or obese patients with type 2 diabetes, consider their effect on weight. E
- Whenever possible, minimize the medications for comorbid conditions that are associated with weight gain. E
- Weight loss medications may be effective as adjuncts to diet, physical activity, and behavioral counseling for selected patients with type 2 diabetes and BMI ≥27 kg/m². Potential benefits must be weighed against the potential risks of the medications. A
- If a patient’s response to weight loss medications is <5% weight loss after 3 months or if there are any safety or tolerability issues at any time, the medication should be discontinued and alternative medications or treatment approaches should be considered. A

Antihyperglycemic Therapy

When evaluating pharmacologic treatments for overweight or obese patients with type 2 diabetes, providers should first consider their choice of glucose-lowering medications. Whenever possible, medications should be chosen to promote weight loss or to be weight neutral. Agents associated with weight loss include metformin, α-glucosidase inhibitors, sodium–glucose cotransporter 2 inhibitors, glucagon-like peptide 1 agonists, and amylin mimetics. Dipeptidyl peptidase 4 inhibitors appear to be weight neutral. Unlike these agents, insulin secretagogues, thiazolidinediones, and insulin have often been associated with weight gain (see Section 8. Pharmacologic Approaches to Glycemic Treatment)

A recent meta-analysis of 227 randomized controlled trials of antihyperglycemic treatments in type 2 diabetes found that A1C changes were not associated with baseline BMI, indicating that obese patients can benefit from the same types of treatments for diabetes as normal-weight patients [28].

Concomitant Medications

Providers should carefully review the patient’s concomitant medications and, whenever possible, minimize or provide alternatives for medications that promote weight gain. Medications associated with weight gain include atypical antipsychotics (e.g., clozapine, olanzapine, risperidone, etc.) and antidepressants (e.g., tricyclic antidepressants, selective serotonin reuptake inhibitors, and monoamine oxidase inhibitors), glucocorticoids, oral contraceptives that contain progestins, anticonvulsants including gabapentin, and a number of antihistamines and anticholinergics.

Approved Weight Loss Medications

The U.S. Food and Drug Administration (FDA) has approved medications for both short-term and long-term weight management. Phentermine is indicated as short-term (a few weeks) adjunct in conjunction with lifestyle and behavioral weight loss interventions [29]. Five weight loss medications (or combination medications) are FDA-approved for long-term use (more than a few weeks) by patients with BMI ≥27 kg/m² with one or more obesity-associated comorbid conditions (e.g., type 2 diabetes, hypertension, and dyslipidemia) and by patients with BMI ≥30 kg/m² who are motivated to lose weight [30–34]. Medications approved by the FDA for the treatment of obesity and their advantages and disadvantages are summarized in Table 7.2. The rationale for weight loss medications is to help patients to more consistently adhere to low-calorie diets and to reinforce lifestyle changes including physical activity. Providers should be knowledgeable about the product label and should balance the potential benefits of successful weight loss against the potential risks of the medication for each patient. These medications are contraindicated in women who are or may become pregnant. Women in their reproductive years must be cautioned to use a reliable method of contraception.

Assessing Efficacy and Safety

Efficacy and safety should be assessed at least monthly for the first 3 months of treatment. If a patient’s response is deemed insufficient (weight loss <5%) after 3 months or if there are any safety or tolerability issues at any time, the medication should be discontinued and alternative medications or treatment approaches should be considered.

In general, pharmacologic treatment of obesity has been limited by low adherence, modest efficacy, adverse effects, and weight regain after medication cessation [30].

METABOLIC SURGERY

Recommendations

- Metabolic surgery should be recommended as an option to treat type 2 diabetes in appropriate surgical candidates with BMI ≥40 kg/m² (BMI ≥37.5 kg/m² in Asian Americans), regardless of the level of glycemic control or complexity of glucose-lowering regimens, and in adults with BMI 35.0–39.9 kg/m² (32.5–37.4 kg/m² in Asian Americans) when hyperglycemia is inadequately controlled despite lifestyle and optimal medical therapy. A
- Metabolic surgery should be considered as an option for adults with type 2 diabetes and BMI 30.0–34.9 kg/m² (27.5–32.4 kg/m² in Asian Americans) if hyperglycemia is inadequately controlled despite optimal medical control by either oral or injectable medications (including insulin). B
- Metabolic surgery should be performed in high-volume centers with multidisciplinary teams that understand and are experienced in the management of diabetes and gastrointestinal surgery. C
- Long-term lifestyle support and routine monitoring of micronutrient
Table 7.2—Medications approved by the FDA for the treatment of obesity

<table>
<thead>
<tr>
<th>Generic drug name (proprietary name[s]), dosage, strength, and form</th>
<th>Usual adult dosing frequency</th>
<th>Average wholesale price (per month)13</th>
<th>National Average Drug Acquisition Cost (per month)14</th>
<th>1-Year weight change status$^{1-4}$</th>
<th>Average weight loss relative to placebo</th>
<th>% Patients with ≥5% loss of baseline weight</th>
<th>Adverse effects$^{1,5-12}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-term treatment (a few weeks)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phentermine (Lomaira)</td>
<td>37.5 mg q.d. or 8 mg t.i.d.</td>
<td>$5-$576 (37.5 mg); $52 (8 mg)</td>
<td>$3-$60 (37.5 mg); Unavailable (8 mg)</td>
<td>N/A*</td>
<td>N/A*</td>
<td>Headache, elevated blood pressure, elevated heart rate, insomnia, dry mouth, constipation, anxiety, palpitations</td>
<td>Dyspnea, angina pectoris, syncope, severe hypertension</td>
</tr>
<tr>
<td>Long-term treatment (more than a few weeks)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipase inhibitor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orlistat (Alli) 60 mg caps or orlistat (Xenical) 120 mg caps</td>
<td>60 mg or 120 mg t.i.d. (during or up to 1 h after a low-fat meal)</td>
<td>$41-$82 (60 mg); $703 (120 mg)</td>
<td>$42 (60 mg); $556 (120 mg)</td>
<td>2.5 kg (60 mg); 3.4 kg (120 mg)</td>
<td>35–73%</td>
<td>Abdominal pain/discomfort, oily spotting/stool, fecal urgency, flatulence, malabsorption of fat soluble vitamins (A, D, E, K) and medications (e.g., cyclosporine, thyroid hormone replacement, or anticonvulsants), potentiation of the effects of warfarin</td>
<td>Liver failure and oxalate nephropathy</td>
</tr>
<tr>
<td>Lorcaserin (Belviq) 10 mg tabs</td>
<td>10 mg b.i.d.</td>
<td>$289</td>
<td>$230</td>
<td>3.2 kg</td>
<td>38–48%</td>
<td>Hypoglycemia, headache, fatigue</td>
<td>Serotonin syndrome or NMS-like reactions, suicidal ideation, heart valve disorder (<2.4%), bradycardia</td>
</tr>
<tr>
<td>Lorcaserin (Belviq XR) 20 mg extended-release tabs</td>
<td>20 mg q.d.</td>
<td>$289</td>
<td>$232</td>
<td>3.2 kg</td>
<td>38–48%</td>
<td>Hypoglycemia, headache, fatigue</td>
<td>Serotonin syndrome or NMS-like reactions, suicidal ideation, heart valve disorder (<2.4%), bradycardia</td>
</tr>
<tr>
<td>Sympathomimetic amine anorectic/antiepileptic combination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phentermine/topiramate ER (Qsymia) 3.75 mg/23 mg caps, 7.5 mg/46 mg caps, 11.25 mg/69 mg caps, 15 mg/92 mg caps</td>
<td>Recommended dose: 3.75 mg/23 mg q.d. for 14 days, then increase to 7.5 mg/46 mg q.d. Maximum dose: 15 mg/92 mg q.d.</td>
<td>$239 (maximum dose using the highest strength)</td>
<td>$192 (maximum dose using the highest strength)</td>
<td>6.7 kg (7.5 mg/46 mg); 8.9 kg (15 mg/92 mg)</td>
<td>45–70%</td>
<td>Paresthesia, xerostomia, constipation, headache</td>
<td>Topiramate is teratogenic and has been associated with cleft lip/palate</td>
</tr>
</tbody>
</table>

Continued on p. S69
Table 7.2—Continued

<table>
<thead>
<tr>
<th>Opioid antagonist/aminoketone antidepressant combination</th>
<th>Usual adult dosing frequency</th>
<th>Average wholesale price (per month)(^1)</th>
<th>National Average Drug Acquisition Cost (per month)(^2)</th>
<th>1-Year weight change status(^3)–(^4)</th>
<th>Average weight loss relative to placebo</th>
<th>% Patients with ≥5% loss of baseline weight</th>
<th>Adverse effects(^5)–(^12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narltrexone/bupropion (Contrave) 8 mg/90 mg tabs</td>
<td>Maximum dose: two tablets of Contrave b.i.d. for a total daily dosage of naltrexone 32 mg/bupropion 360 mg</td>
<td>$290 (maximum dose)</td>
<td>$231 (maximum dose)</td>
<td>2.0–4.1 kg (32 mg/360 mg)</td>
<td>36–57%</td>
<td>Nausea, constipation, headache, vomiting</td>
<td>Depression, precipitation of mania, contraindicated in patients with a seizure disorder</td>
</tr>
<tr>
<td>Glucagon-like peptide 1 receptor agonist</td>
<td>Maintenance dose: 3 mg s.c. q.d.</td>
<td>$1,385</td>
<td>$1,105</td>
<td>5.8–5.9 kg</td>
<td>51–73%</td>
<td>Hypoglycemia, nausea, vomiting, diarrhea, constipation, headache</td>
<td>Pancreatitis, thyroid C-cell tumors in rodents, contraindicated in patients with personal/ family history of MTC or MEN2, acute renal failure</td>
</tr>
</tbody>
</table>

All medications are contraindicated in women who are or may become pregnant. Women in their reproductive years must be cautioned to use a reliable method of contraception. Caps, capsules; ER, extended release; MEN2, multiple endocrine neoplasia type 2; MTC, medullary thyroid carcinoma; N/A, not applicable; NMS, neuroleptic malignant syndrome; s.c., subcutaneous; tabs, tablets. *Phentermine is FDA-approved as a short-term adjunct (a few weeks) in a regimen of weight reduction based on exercise, behavioral modification, and caloric restriction.

1 Physicians’ Desk Reference. PDR Network, LLC (electronic version). Truven Health Analytics, Greenwood Village, CO.
5 DrugPoints System (electronic version). Truven Health Analytics, Greenwood Village, CO.
6 Selective common (defined as an incidence of >5%) and serious adverse effects are noted. Refer to the medication package inserts for full information about adverse effects, cautions, and contraindications.
7 Data of common adverse effects for Xenical were derived from seven double-blind, placebo-controlled clinical trials in mixed-type study populations (i.e., patients with or without type 2 diabetes), but the percentage of patients with type 2 diabetes was not reported. In clinical trials in obese patients with diabetes, hypoglycemia and abdominal distension were also observed.
8 Data of common adverse effects for Belviq were derived from placebo-controlled clinical trials in patients with type 2 diabetes.
9 Data of common adverse effects for Qsymia were derived from four clinical trials in mixed-type study populations (i.e., patients with or without type 2 diabetes); 13% had type 2 diabetes.
10 Data of common adverse effects for Contrave were derived from five double-blind, placebo-controlled clinical trials in mixed-type study populations (i.e., patients with or without type 2 diabetes); 13% had type 2 diabetes.
11 Data of common adverse effects for Saxenda were derived from clinical trials in mixed-type study populations (i.e., patients with or without type 2 diabetes). Percentage of patients with type 2 diabetes was not reported.
Several gastrointestinal (GI) operations including partial gastrectomies and bariatric procedures (35) promote dramatic and durable improvement of type 2 diabetes. Given the magnitude and rapidity of the effect of GI surgery on hyperglycemia, and experimental evidence that rearrangements of GI anatomy similar to those in some metabolic procedures directly affect glucose homeostasis (36), GI interventions have been suggested as treatments for type 2 diabetes, and in that context are termed “metabolic surgery.”

A substantial body of evidence has now accumulated, including data from numerous randomized controlled clinical trials, demonstrating that metabolic surgery achieves superior glycemic control and reduction of cardiovascular risk factors in obese patients with type 2 diabetes compared with various lifestyle/medical interventions (35). Improvements in micro- and macrovascular complications of diabetes, cardiovascular disease, and cancer have been observed only in nonrandomized observational studies (37–46). Cohort studies attempting to match surgical and nonsurgical subjects suggest that the procedure may reduce longer-term mortality (38).

On the basis of this mounting evidence, several organizations and government agencies have recommended expanding the indications for metabolic surgery to include patients with inadequately controlled type 2 diabetes and BMI as low as 30 kg/m² (27.5 kg/m² for Asian Americans) (47–50).

Several gastrointestinal (GI) operations including partial gastrectomies and bariatric procedures (35) promote dramatic and durable improvement of type 2 diabetes. Given the magnitude and rapidity of the effect of GI surgery on hyperglycemia, and experimental evidence that rearrangements of GI anatomy similar to those in some metabolic procedures directly affect glucose homeostasis (36), GI interventions have been suggested as treatments for type 2 diabetes, and in that context are termed “metabolic surgery.”

A substantial body of evidence has now accumulated, including data from numerous randomized controlled clinical trials, demonstrating that metabolic surgery achieves superior glycemic control and reduction of cardiovascular risk factors in obese patients with type 2 diabetes compared with various lifestyle/medical interventions (35). Improvements in micro- and macrovascular complications of diabetes, cardiovascular disease, and cancer have been observed only in nonrandomized observational studies (37–46). Cohort studies attempting to match surgical and nonsurgical subjects suggest that the procedure may reduce longer-term mortality (38).

On the basis of this mounting evidence, several organizations and government agencies have recommended expanding the indications for metabolic surgery to include patients with inadequately controlled type 2 diabetes and BMI as low as 30 kg/m² (27.5 kg/m² for Asian Americans) (47–50).

Please refer to “Metabolic Surgery in the Treatment Algorithm for Type 2 Diabetes: A Joint Statement by International Diabetes Organizations” for a thorough review (35).

Randomized controlled trials with postoperative follow up ranging from 1 to 5 years have documented sustained diabetes remission in 30–63% of patients (35). Available data suggest an erosion of diabetes remission over time (51): 35–50% or more of patients who initially achieve remission of diabetes eventually experience recurrence. However, the median disease-free period among such individuals following Roux-en-Y gastric bypass (RYGB) is 8.3 years (52,53). With or without diabetes relapse, the majority of patients who undergo surgery maintain substantial improvement of glycemic control from baseline for at least 5 (54,55) to 15 (38,39,53,56–58) years.

Younger age, shorter duration of diabetes (e.g., <8 years) (59), nonuse of insulin, and better glycemic control are consistently associated with higher rates of diabetes remission and/or lower risk of recidivism (38,57,59). Greater baseline visceral fat area may also help to predict better postoperative outcomes, especially among Asian American patients with type 2 diabetes, who typically have more visceral fat compared with Caucasians with diabetes of the same BMI (60).

Beyond improving glycemia, metabolic surgery has been shown to confer additional health benefits in randomized controlled trials, including greater reductions in cardiovascular disease risk factors (35) and enhancements in quality of life (54,59,61).

The safety of metabolic surgery has improved significantly over the past two decades, with continued refinement of minimally invasive approaches (laparoscopic surgery), enhanced training and credentialing, and involvement of multidisciplinary teams. Mortality rates with metabolic operations are typically 0.1–0.5%, similar to cholecystectomy or hysterectomy (62–66). Morbidity has also dramatically declined with laparoscopic approaches. Major complications rates are 2–6%, with minor complications in up to 15% (62–70), comparing favorably with other commonly performed elective operations (66). Empirical data suggest that proficiency of the operating surgeon is an important factor for determining mortality, complications, reoperations, and readmissions (71).

Although metabolic surgery has been shown to improve the metabolic profiles of morbidly obese patients with type 1 diabetes, establishing the role of metabolic surgery in such patients will require larger and longer studies (72).

Retrospective analyses and modeling studies suggest that metabolic surgery may be cost-effective or even cost-saving for patients with type 2 diabetes, but the results are largely dependent on assumptions about the long-term effectiveness and safety of the procedures (73,74).

Adverse Effects

Metabolic surgery is costly and has associated risks. Longer-term concerns include dumping syndrome (nausea, colic, diarrhea), vitamin and mineral deficiencies, anemia, osteoporosis, and, rarely (75), severe hypoglycemia from insulin hypersecretion. Long-term nutritional and micronutrient deficiencies and related complications occur with variable frequency depending on the type of procedure and require lifelong vitamin/nutritional supplementation (76,77). Postprandial hypoglycemia is most likely to occur with RYGB (77,78). The exact prevalence of symptomatic hypoglycemia is unknown. In one study, it affected 11% of 450 patients who had undergone RYGB or vertical sleeve gastrectomy (75). Patients who undergo metabolic surgery may be at increased risk for substance use, including drug and alcohol use and cigarette smoking (79).

People with diabetes presenting for metabolic surgery also have increased rates of depression and other major psychiatric disorders (80). Candidates for metabolic surgery with histories of alcohol or substance abuse, significant depression, suicidal ideation, or other mental health conditions should therefore first be assessed by a mental health professional with expertise in obesity management prior to consideration for surgery (81). Individuals with preoperative psychopathology should be assessed regularly following metabolic surgery to optimize mental health management and to ensure psychiatric symptoms do not interfere with weight loss and lifestyle changes.

References

51. Ikramuddin S, Korner J, Lee W-J, et al. Dura-
62. Flum DR, Belle SH, King WC, et al.; Longitudi-
64. Arterburn DE, Courcoulas AP. Bariatric surgery for obesity and metabolic conditions in adults. BMJ 2014;349:g3961.
65. Young MT, Gebhart A, Phelan MJ, Nguyen NT. Use and outcomes of laparoscopic sleeve gastrec-
69. Hutter MM, Schirmer BD, Jones DB, et al. First report from the American College of Surgeons Bariatric Surgery Center Network: laparoscopic sleeve gastrectomy has morbidity and effective-
71. Birkmeyer JD, Finks JF, O’Reilly A, et al.; Michi-
73. Rubin JK, Hinrichs-Krapels S, Hesketh R, Martin A, Herman WH, Rubino F. Identifying bar-
riers to appropriate use of metabolic/bariatric sur-
74. Fouse T, Schauer P. The socioeconomic im-
75. Service GJ, Thompson GB, Service FJ, Andrews JC, Collazo-Clavelis ML, Lloyd RV. Hyper-
76. Mechanic JI, Kushner RF, Sugerman HJ, et al.; American Association of Clinical Endocrinolo-
gists; Obesity Society; American Society for Met-
abolic & Bariatric Surgery. American Association of Clinical Endocrinologists, The Obesity Society, and American Society for Metabolic & Bariatric Surgery medical guidelines for clinical practice for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery pa-
tient. Obesity (Silver Spring) 2009;17(Suppl. 1)
51–570, v.
51–527.
78. Lee CJ, Clark JM, Schweitzer M, et al. Preva-
ence of and risk factors for hypoglycemic symp-
The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

PHARMACOLOGIC THERAPY FOR TYPE 1 DIABETES

Recommendations

- Most people with type 1 diabetes should be treated with multiple daily injections of prandial insulin and basal insulin or continuous subcutaneous insulin infusion. A
- Most individuals with type 1 diabetes should use rapid-acting insulin analogs to reduce hypoglycemia risk. A
- Consider educating individuals with type 1 diabetes on matching prandial insulin doses to carbohydrate intake, premeal blood glucose levels, and anticipated physical activity. E
- Individuals with type 1 diabetes who have been successfully using continuous subcutaneous insulin infusion should have continued access to this therapy after they turn 65 years of age. E

Insulin Therapy

Insulin is the mainstay of therapy for individuals with type 1 diabetes. Generally, the starting insulin dose is based on weight, with doses ranging from 0.4 to 1.0 units/kg/day of total insulin with higher amounts required during puberty. The American Diabetes Association/JDRF Type 1 Diabetes Sourcebook notes 0.5 units/kg/day as a typical starting dose in patients with type 1 diabetes who are metabolically stable, with higher weight-based dosing required immediately following presentation with ketoacidosis (1), and provides detailed information on intensification of therapy to meet individualized needs. The American Diabetes Association (ADA) position statement “Type 1 Diabetes Management Through the Life Span” additionally provides a thorough overview of type 1 diabetes treatment (2).
Education regarding matching prandial insulin dosing to carbohydrate intake, premeal glucose levels, and anticipated activity should be considered, and selected individuals who have mastered carbohydrate counting should be educated on fat and protein gram estimation (3–5). Although most studies of multiple daily injections versus continuous subcutaneous insulin infusion (CSII) have been small and of short duration, a systematic review and meta-analysis concluded that there are minimal differences between the two forms of intensive insulin therapy in A1C (combined mean between-group difference favoring insulin pump therapy −0.30% [95% CI −0.58 to −0.02]) and severe hypoglycemia rates in children and adults (6). A 3-month randomized trial in patients with type 1 diabetes with nocturnal hypoglycemia reported that sensor-augmented insulin pump therapy with the threshold suspend feature reduced nocturnal hypoglycemia without increasing glycated hemoglobin levels (7). The U.S. Food and Drug Administration (FDA) has also approved the first hybrid closed-loop system pump. The safety and efficacy of hybrid closed-loop systems has been supported in the literature in adolescents and adults with type 1 diabetes (8,9).

Intensive management using CSII and continuous glucose monitoring should be encouraged in selected patients when there is active patient/family participation (10–12).

The Diabetes Control and Complications Trial (DCCT) clearly showed that intensive therapy with multiple daily injections or CSII delivered by multidisciplinary teams of physicians, nurses, dietitians, and behavioral scientists improved glycemia and resulted in better long-term outcomes (13–15). The study was carried out with short-acting and intermediate-acting human insulins. Despite better microvascular, macrovascular, and all-cause mortality outcomes, intensive therapy was associated with a high rate of severe hypoglycemia (61 episodes per 100 patient-years of therapy). Since the DCCT, a number of rapid-acting and long-acting insulin analogs have been developed. These analogs are associated with less hypoglycemia, less weight gain, and lower A1C than human insulins in people with type 1 diabetes (16–18). Longer-acting basal analogs (U-300 glargine or degludec) may additionally convey a lower hypoglycemia risk compared with U-100 glargine in patients with type 1 diabetes (19,20).

Rapid-acting inhaled insulin used before meals in patients with type 1 diabetes was shown to be noninferior when compared with aspart insulin for A1C lowering, with less hypoglycemia observed with inhaled insulin therapy (21). However, the mean reduction in A1C was greater with aspart (~0.21% vs. ~0.40%, satisfying the noninferiority margin of 0.4%), and more patients in the insulin aspart group achieved A1C goals of ≤7.0% (53 mmol/mol) and ≤6.5% (48 mmol/mol). Because inhaled insulin cartridges are only available in 4-, 8-, and 12-unit doses, limited dosing increments to fine-tune prandial insulin doses in type 1 diabetes are a potential limitation.

Postprandial glucose excursions may be better controlled by adjusting the timing of prandial (bolus) insulin dose administration. The optimal time to administer prandial insulin varies, based on the type of insulin used (regular, rapid-acting analog, inhaled, etc.), measured blood glucose level, timing of meals, and carbohydrate consumption. Recommendations for prandial insulin dose administration should therefore be individualized.

Pramlintide
Pramlintide, an amylin analog, is an agent that delays gastric emptying, blunts pancreatic secretion of glucagon, and enhances satiety. It is FDA-approved for use in adults with type 1 diabetes. It has been shown to induce weight loss and lower insulin doses. Concurrent reduction of prandial insulin dosing is required to reduce the risk of severe hypoglycemia.

Investigational Agents
Metformin
Adding metformin to insulin therapy may reduce insulin requirements and improve metabolic control in patients with type 1 diabetes. In one study, metformin was found to reduce insulin requirements (6.6 units/day, P < 0.001), and led to small reductions in weight and total and LDL cholesterol but not to improved glycemic control (absolute A1C reduction 0.11%, P = 0.42) (22). A randomized clinical trial similarly found that, among overweight adolescents with type 1 diabetes, the addition of metformin to insulin did not improve glycemic control and increased risk for gastrointestinal adverse events after 6 months compared with placebo (23). The Reducing With Metformin Vascular Adverse Lesions in Type 1 Diabetes (REMOVAL) trial investigated the addition of metformin therapy to titrated insulin therapy in adults with type 1 diabetes at increased risk for cardiovascular disease and found that metformin did not significantly improve glycemic control beyond the first 3 months of treatment and that progression of atherosclerosis (measured by carotid artery intima-media thickness) was not significantly reduced, although other cardiovascular risk factors such as body weight and LDL cholesterol improved (24). Metformin is not FDA-approved for use in patients with type 1 diabetes.

Incretin-Based Therapies
Due to their potential protection of β-cell mass and suppression of glucagon release, glucagon-like peptide 1 (GLP-1) receptor agonists (25) and dipeptidyl peptidase 4 (DPP-4) inhibitors (26) are being studied in patients with type 1 diabetes but are not currently FDA-approved for use in patients with type 1 diabetes.

Sodium–Glucose Cotransporter 2 Inhibitors
Sodium–glucose cotransporter 2 (SGLT2) inhibitors provide insulin-independent glucose lowering by blocking glucose reabsorption in the proximal renal tubule by inhibiting SGLT2. These agents provide modest weight loss and blood pressure reduction in type 2 diabetes. There are three FDA-approved agents for patients with type 2 diabetes, but none are FDA-approved for the treatment of patients with type 1 diabetes (2). SGLT2 inhibitors may have glycemic benefits in patients with type 1 or type 2 diabetes on insulin therapy (27). The FDA issued a warning about the risk of ketoacidosis occurring in the absence of significant hyperglycemia (euglycemic diabetic ketoacidosis) in patients with type 1 or type 2 diabetes treated with SGLT2 inhibitors. Symptoms of ketoacidosis include dyspnea, nausea, vomiting, and abdominal pain. Patients should be instructed to stop taking SGLT2 inhibitors and seek medical attention immediately if they have symptoms or signs of ketoacidosis (28).

SURGICAL TREATMENT FOR TYPE 1 DIABETES
Pancreas and Islet Transplantation
Pancreas and islet transplantation have been shown to normalize glucose levels
but require life-long immunosuppression to prevent graft rejection and recurrence of autoimmune islet destruction. Given the potential adverse effects of immunosuppressive therapy, pancreas transplantation should be reserved for patients with type 1 diabetes undergoing simultaneous renal transplantation, following renal transplantation, or for those with recurrent ketoacidosis or severe hypoglycemia despite intensive glycemic management (29).

PHARMACOLOGIC THERAPY FOR TYPE 2 DIABETES

Recommendations

- Metformin, if not contraindicated and if tolerated, is the preferred initial pharmacologic agent for the treatment of type 2 diabetes. A
- Long-term use of metformin may be associated with biochemical vitamin B12 deficiency, and periodic measurement of vitamin B12 levels should be considered in metformin-treated patients, especially in those with anemia or peripheral neuropathy. B
- Consider initiating insulin therapy (with or without additional agents) in patients with newly diagnosed type 2 diabetes who are symptomatic and/or have A1C ≥10% (86 mmol/mol) and/or blood glucose levels ≥300 mg/dL (16.7 mmol/L). E
- Consider initiating dual therapy in patients with newly diagnosed type 2 diabetes who have A1C ≥9% (75 mmol/mol). E
- In patients without atherosclerotic cardiovascular disease, if monotherapy or dual therapy does not achieve or maintain the A1C goal over 3 months, add an additional antihyperglycemic agent based on drug-specific and patient factors (Table 8.1). A
- A patient-centered approach should be used to guide the choice of pharmacologic agents. Considerations include efficacy, hypoglycemia risk, history of atherosclerotic cardiovascular disease, impact on weight, potential side effects, renal effects, delivery method (oral versus subcutaneous), cost, and patient preferences. E
- In patients with type 2 diabetes and established atherosclerotic cardiovascular disease, antihyperglycemic therapy should begin with lifestyle management and metformin and subsequently incorporate an agent proven to reduce major adverse cardiovascular events and cardiovascular mortality (currently empagliflozin and liraglutide), after considering drug-specific and patient factors (Table 8.1). A *
- In patients with type 2 diabetes and established atherosclerotic cardiovascular disease, after lifestyle management and metformin, the antihyperglycemic agent canagliflozin may be considered to reduce major adverse cardiovascular events, based on drug-specific and patient factors (Table 8.1) and regimen complexity is recommended. E
- For patients with type 2 diabetes who are not achieving glycemic goals, drug intensification, including consideration of insulin therapy, should not be delayed. B
- Metformin should be continued when used in combination with other agents, including insulin, if not contraindicated and if tolerated. A

See Section 12 for recommendations specific for children and adolescents with type 2 diabetes. The use of metformin as first-line therapy was supported by findings from a large meta-analysis, with selection of second-line therapies based on patient-specific considerations (30). An ADA/European Association for the Study of Diabetes position statement “Management of Hyperglycemia in Type 2 Diabetess, 2015: A Patient-Centered Approach” (31) recommended a patient-centered approach, including assessment of efficacy, hypoglycemia risk, impact on weight, side effects, costs, and patient preferences. Renal effects may also be considered when selecting glucose-lowering medications for individual patients. Lifestyle modifications that improve health (see Section 4 “Lifestyle Management”) should be emphasized along with any pharmacologic therapy.

Combination Therapy

Although there are numerous trials comparing dual therapy with metformin alone, few directly compare drugs as add-on therapy. A comparative effectiveness meta-analysis (36) suggests that each new class of noninsulin agents added to initial therapy generally lowers A1C approximately 0.7–1.0%. If the A1C target is not achieved after approximately 3 months and patient does not have atherosclerotic cardiovascular disease (ASCVD), consider a combination of metformin and any one of the preferred six treatment options: sulfonylurea, thiazolidinedione, DPP-4...
Antihyperglycemic Therapy in Adults with Type 2 Diabetes

At diagnosis, initiate lifestyle management, set A1C target, and initiate pharmacologic therapy based on A1C:

- **A1C is less than 9%**, consider Monotherapy.
- **A1C is greater than or equal to 9%**, consider Dual Therapy.
- **A1C is greater than or equal to 10%**, blood glucose is greater than or equal to 300 mg/dL, or patient is markedly symptomatic, consider Combination Injectable Therapy (See Figure 8.2).

Monotherapy

Initiate metformin therapy if no contraindications* (See Table 8.1)

Dual Therapy

Lifestyle Management + Metformin + Additional Agent

- **ASCVD?**
 - **Yes**: Add agent proven to reduce major adverse cardiovascular events and/or cardiovascular mortality (see recommendations with * on p. S75 and Table 8.1)
 - **No**: Add second agent after consideration of drug-specific effects and patient factors (See Table 8.1)

Triple Therapy

Lifestyle Management + Metformin + Two Additional Agents

Add third agent based on drug-specific effects and patient factors† (See Table 8.1)

Combination Injectable Therapy

(See Figure 8.2)

Figure 8.1—Antihyperglycemic therapy in type 2 diabetes: general recommendations. *If patient does not tolerate or has contraindications to metformin, consider agents from another class in Table 8.1. #GLP-1 receptor agonists and DPP-4 inhibitors should not be prescribed in combination. If a patient with ASCVD is not yet on an agent with evidence of cardiovascular risk reduction, consider adding.

inhibitor, SGLT2 inhibitor, GLP-1 receptor agonist, or basal insulin (Fig. 8.1); the choice of which agent to add is based on drug-specific effects and patient factors (Table 8.1). For patients with ASCVD, add a second agent with evidence of cardiovascular risk reduction after consideration of drug-specific and patient factors (see p. S77 CARDIOVASCULAR OUTCOMES TRIALS). If A1C target is still not achieved after ~3 months of dual therapy, proceed to a three-drug combination (Fig. 8.1). Again, if A1C target is not achieved after ~3 months of triple therapy, proceed to combination injectable therapy (Fig. 8.2). Drug choice is based on...
Table 8.1—Drug-specific and patient factors to consider when selecting antihyperglycemic treatment in adults with type 2 diabetes.

<table>
<thead>
<tr>
<th>Drug-specific Factors</th>
<th>Patient Factors</th>
<th>Oral</th>
<th>GLP-1 RAs</th>
<th>DPP-4 Inhibitors</th>
<th>SGLT2 Inhibitors</th>
<th>MMT2</th>
<th>T2DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose lowering effect</td>
<td>Age</td>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Hypoglycemia risk</td>
<td>Gender</td>
<td>Male</td>
<td>Female</td>
<td>Male</td>
<td>Female</td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>Renal function</td>
<td>Medication adherence</td>
<td>Poor</td>
<td>Good</td>
<td>Poor</td>
<td>Good</td>
<td>Poor</td>
<td>Good</td>
</tr>
<tr>
<td>Hepatic function</td>
<td>Renal function</td>
<td>Poor</td>
<td>Good</td>
<td>Poor</td>
<td>Good</td>
<td>Poor</td>
<td>Good</td>
</tr>
<tr>
<td>Cardiovascular risk</td>
<td>Heart disease</td>
<td>Present</td>
<td>Absent</td>
<td>Present</td>
<td>Absent</td>
<td>Present</td>
<td>Absent</td>
</tr>
<tr>
<td>Diabetic nephropathy</td>
<td>Diabetic nephropathy</td>
<td>Present</td>
<td>Absent</td>
<td>Present</td>
<td>Absent</td>
<td>Present</td>
<td>Absent</td>
</tr>
<tr>
<td>Diabetic retinopathy</td>
<td>Diabetic retinopathy</td>
<td>Present</td>
<td>Absent</td>
<td>Present</td>
<td>Absent</td>
<td>Present</td>
<td>Absent</td>
</tr>
<tr>
<td>Diabetic peripheral neuropathy</td>
<td>Diabetic peripheral neuropathy</td>
<td>Present</td>
<td>Absent</td>
<td>Present</td>
<td>Absent</td>
<td>Present</td>
<td>Absent</td>
</tr>
<tr>
<td>Insulin resistance</td>
<td>Insulin resistance</td>
<td>Poor</td>
<td>Good</td>
<td>Poor</td>
<td>Good</td>
<td>Poor</td>
<td>Good</td>
</tr>
<tr>
<td>Insulin secretion</td>
<td>Insulin secretion</td>
<td>Poor</td>
<td>Good</td>
<td>Poor</td>
<td>Good</td>
<td>Poor</td>
<td>Good</td>
</tr>
<tr>
<td>Oral hypoglycemic agents</td>
<td>Oral hypoglycemic agents</td>
<td>Poor</td>
<td>Good</td>
<td>Poor</td>
<td>Good</td>
<td>Poor</td>
<td>Good</td>
</tr>
<tr>
<td>GLP-1 RAs medication</td>
<td>GLP-1 RAs medication</td>
<td>Poor</td>
<td>Good</td>
<td>Poor</td>
<td>Good</td>
<td>Poor</td>
<td>Good</td>
</tr>
<tr>
<td>DPP-4 Inhibitors medication</td>
<td>DPP-4 Inhibitors medication</td>
<td>Poor</td>
<td>Good</td>
<td>Poor</td>
<td>Good</td>
<td>Poor</td>
<td>Good</td>
</tr>
<tr>
<td>SGLT2 Inhibitors medication</td>
<td>SGLT2 Inhibitors medication</td>
<td>Poor</td>
<td>Good</td>
<td>Poor</td>
<td>Good</td>
<td>Poor</td>
<td>Good</td>
</tr>
<tr>
<td>MMT2 medication</td>
<td>MMT2 medication</td>
<td>Poor</td>
<td>Good</td>
<td>Poor</td>
<td>Good</td>
<td>Poor</td>
<td>Good</td>
</tr>
<tr>
<td>T2DM medication</td>
<td>T2DM medication</td>
<td>Poor</td>
<td>Good</td>
<td>Poor</td>
<td>Good</td>
<td>Poor</td>
<td>Good</td>
</tr>
<tr>
<td>Additional Considerations</td>
<td></td>
<td>Poor</td>
<td>Good</td>
<td>Poor</td>
<td>Good</td>
<td>Poor</td>
<td>Good</td>
</tr>
</tbody>
</table>

*See ref. 31 for description of effect. †FDA approved for CVD benefit. (CVD) Cardiovascular disease. (DPP-4) Dipeptidyl peptidase-4. (MMT2) Mammalian target of rapamycin. (SGLT2) Solute carrier family 11, member 2. (T2DM) Type 2 diabetes.
patient preferences (37), as well as various patient, disease, and drug characteristics, with the goal of reducing blood glucose levels while minimizing side effects, especially hypoglycemia. If not already included in the treatment regimen, addition of an agent with evidence of cardiovascular risk reduction should be considered in patients with ASCVD beyond dual therapy, with continuous reevaluation of patient factors to guide treatment (Table 8.1).

Table 8.2 lists drugs commonly used in the U.S. Cost-effectiveness models of the newer agents based on clinical utility and glycemic effect have been reported (38). Table 8.3 provides cost information for currently approved noninsulin therapies. Of note, prices listed are average wholesale prices (AWP) (39) and National Average Drug Acquisition Costs (NADAC) (40) and do not account for discounts, rebates, or other price adjustments often involved in prescription sales that affect the actual cost incurred by the patient. While there are alternative means to estimate medication prices, AWP and NADAC...
Table 8.2—Pharmacology of available glucose-lowering agents in the U.S. for the treatment of type 2 diabetes

<table>
<thead>
<tr>
<th>Class</th>
<th>Compound(s)</th>
<th>Cellular mechanism(s)</th>
<th>Primary physiological action(s)</th>
<th>Renal dosing recommendations (63–66)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biguanides</td>
<td>Metformin</td>
<td>Activates AMP kinase (?) other</td>
<td>↓ Hepatic glucose production</td>
<td>● No dose adjustment if eGFR >45; do not initiate OR assess risk/benefit if currently on metformin if eGFR 30–45; discontinue if eGFR <30</td>
</tr>
</tbody>
</table>
| Sulfonylureas (2nd generation) | Glyburide | Closes K\textsubscript{ATP} channels on β-cell plasma membranes | ↑ Insulin secretion | ● Avoid use in patients with renal impairment
 ● Initiate conservatively at 2.5 mg daily to avoid hypoglycemia
 ● Initiate conservatively at 1 mg daily to avoid hypoglycemia |
| Glipizide | | | | |
| Glimepiride | | | | |
| Meglitinides (glinides) | Repaglinide | Closes K\textsubscript{ATP} channels on β-cell plasma membranes | ↑ Insulin secretion | ● Initiate conservatively at 0.5 mg with meals if eGFR <30
 ● Initiate conservatively at 60 mg with meals if eGFR <30 |
| Glipizide | | | | |
| Glimepiride | | | | |
| Thiazolidinediones | Pioglitazone | Activates the nuclear transcription factor PPAR-γ | ↑ Insulin sensitivity | ● No dose adjustment required |
| Alogliptin | | | | |
| α-Glucosidase inhibitors | Acarbose | Inhibits intestinal α-glucosidase | Slows intestinal carbohydrate digestion/absorption | ● Avoid if eGFR <30 |
| | Miglitol | | | ● Avoid if eGFR <25 |
| DPP-4 inhibitors | Sitagliptin | Inhibits DPP-4 activity, increasing postprandial incretin (GLP-1, GIP) concentrations | ↑ Insulin secretion (glucose dependent); ↓ Glucagon secretion (glucose dependent) | ● 100 mg daily if eGFR >50;
 50 mg daily if eGFR 30–50;
 25 mg daily if eGFR <30 |
| | Saxagliptin | | | ● 5 mg daily if eGFR >50;
 2.5 mg daily if eGFR =50
 ● No dose adjustment required |
| | Linagliptin | | | |
| | Alogliptin | | | |
| Bile acid sequestrants | Colesevelam | Binds bile acids in intestinal tract, increasing hepatic bile acid production | ? ↓ Hepatic glucose production; ? ↑ Incretin levels | ● No specific dose adjustment recommended by manufacturer |
| Dopamine-2 agonists | Bromocriptine (quick release)§ | Activates dopaminergic receptors | Modulates hypothalamic regulation of metabolism; ↑ Insulin sensitivity | ● No specific dose adjustment recommended by manufacturer |
| SGLT2 inhibitors | Canagliflozin | Inhibits SGLT2 in the proximal nephron | Blocks glucose reabsorption by the kidney, increasing glucosuria | ● No dose adjustment required if eGFR ≥60;
 100 mg daily if eGFR 45–59;
 avoid use and discontinue in patients with eGFR persistently <45
 ● Avoid initiating if eGFR <60;
 not recommended with eGFR 30–60;
 contraindicated with eGFR <30
 ● Contraindicated with eGFR <30 |
| | Dapagliflozin | | | |
| | Empagliflozin | | | |
| GLP-1 receptor agonists | Exenatide | Activates GLP-1 receptors | ↑ Insulin secretion (glucose dependent) | ● Not recommended with eGFR <30
 ● Not recommended with eGFR <30 |
| | Exenatide extended release | | | |

Continued on p. S80
Table 8.2—Continued

<table>
<thead>
<tr>
<th>Class</th>
<th>Compound(s)</th>
<th>Cellular mechanism(s)</th>
<th>Primary physiological action(s)</th>
<th>Renal dosing recommendations (63–66)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Liraglutide</td>
<td>↓ Glucagon secretion (glucose dependent);</td>
<td>• No specific dose adjustment recommended by the manufacturer;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slows gastric emptying;</td>
<td>limited experience in patients with severe renal impairment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Albiglutide</td>
<td></td>
<td>• No dose adjustment required for eGFR 15–89 per manufacturer;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>limited experience in patients with severe renal impairment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lixisenatide</td>
<td></td>
<td>• No dose adjustment required for eGFR 60–89;</td>
<td></td>
</tr>
<tr>
<td>Amylin mimetics</td>
<td>Pramlintide§</td>
<td>Activates amylin receptors</td>
<td>↓ Glucagon secretion;</td>
<td>• No specific dose adjustment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Slows gastric emptying;</td>
<td>recommended by manufacturer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>↑ Satiety</td>
<td></td>
</tr>
<tr>
<td>Insulins</td>
<td>Rapid-acting analogs</td>
<td>Activates insulin receptors</td>
<td>↑ Glucose disposal;</td>
<td>• Lower insulin doses required with</td>
</tr>
<tr>
<td></td>
<td>Lispro</td>
<td></td>
<td>↓ Hepatic glucose production;</td>
<td>a decrease in eGFR; titrate per clinical response</td>
</tr>
<tr>
<td></td>
<td>Aspart</td>
<td></td>
<td>Suppresses ketogenesis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glulisine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inhaled insulin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Short-acting analogs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Human Regular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intermediate-acting analogs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Human NPH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basal insulin analogs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glargine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Detemir</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Degludec</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Premixed insulin products</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NPH/Regular 70/30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70/30 aspart mix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>75/25 lispro mix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50/50 lispro mix</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* eGFR is given in mL/min/1.73 m². § Not licensed in Europe for type 2 diabetes. GIP, glucose-dependent insulinotropic peptide; PPAR-γ, peroxisome proliferator–activated receptor γ.
were utilized to provide two separate measures to allow for a comparison of drug prices with the primary goal of highlighting the importance of cost considerations when prescribing antihyperglycemic treatments. The ongoing Glycemia Reduction Approaches in Diabetes: A Comparative Effectiveness Study (GRADE) will compare four drug classes (sulfonylurea, DPP-4 inhibitor, GLP-1 receptor agonist, and basal insulin) when added to metformin therapy over 4 years on glycemic control and other outcomes (41).

Rapid-acting secretagogues (meglitinides) may be used instead of sulfonylureas in patients with sulfa allergies or irregular meal schedules or in those who develop late postprandial hypoglycemia when taking a sulfonylurea. Other drugs not shown in Table 8.1 (e.g., inhaled insulin, α-glucosidase inhibitors, colesevelam, bromocriptine, and pramlintide) may be tried in specific situations but considerations include modest efficacy in type 2 diabetes, frequency of administration, potential for drug interactions, cost, and/or side effects.

Cardiovascular Outcomes Trials

There are now three large randomized controlled trials reporting statistically significant reductions in cardiovascular events for two SGLT2 inhibitors (empagliflozin and canagliflozin) and one GLP-1 receptor agonist (liraglutide) where the majority, if not all patients, in the trial had ASCVD. The empagliflozin and liraglutide trials demonstrated significant reductions in cardiovascular death. Exenatide once-weekly did not have statistically significant reductions in major adverse cardiovascular events or cardiovascular mortality but did have a significant reduction in all-cause mortality. In contrast, other GLP-1 receptor agonists have not shown similar reductions in cardiovascular events (Table 9.4). Whether the benefits of GLP-1 receptor agonists are a class effect remains to be definitively established. See Antihyperglycemic Therapies and Cardiovascular Outcomes in Section 9 “Cardiovascular Disease and Risk Management” and Table 9.4 for a detailed description of these cardiovascular

Table 8.3—Median monthly cost of maximum approved daily dose of noninsulin glucose-lowering agents in the U.S.

<table>
<thead>
<tr>
<th>Class</th>
<th>Compound(s)</th>
<th>Dosage strength/product (if applicable)</th>
<th>Median AWP (min, max) †</th>
<th>Median NADAC (min, max) †</th>
<th>Maximum approved daily dose*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biguanides</td>
<td>• Metformin</td>
<td>500 mg (IR)</td>
<td>$84 ($4, $93)</td>
<td>$2</td>
<td>2,000 mg</td>
</tr>
<tr>
<td></td>
<td>850 mg (IR)</td>
<td>$108 ($6, $109)</td>
<td>$2</td>
<td>2,550 mg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,000 mg (IR)</td>
<td>$87 ($4, $88)</td>
<td>$2</td>
<td>2,000 mg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>500 mg (ER)</td>
<td>$89 ($82, $6,671)</td>
<td>$5 ($5, $3,630)</td>
<td>2,000 mg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>750 mg (ER)</td>
<td>$72 ($65, $92)</td>
<td>$5</td>
<td>1,500 mg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,000 mg (ER)</td>
<td>$1,028 ($1,028, $7,214)</td>
<td>$5 ($3,539, $5,189)</td>
<td>2,000 mg</td>
<td></td>
</tr>
<tr>
<td>Sulfonylureas (2nd generation)</td>
<td>• Glyburide</td>
<td>5 mg</td>
<td>$93 ($63, $103)</td>
<td>$17</td>
<td>20 mg</td>
</tr>
<tr>
<td></td>
<td>• Glipizide</td>
<td>6 mg (micronized)</td>
<td>$50 ($48, $71)</td>
<td>$12</td>
<td>12 mg (micronized)</td>
</tr>
<tr>
<td></td>
<td>• Glimepiride</td>
<td>10 mg (IR)</td>
<td>$75 ($67, $97)</td>
<td>$4</td>
<td>40 mg (IR)</td>
</tr>
<tr>
<td></td>
<td>• Glimepiride</td>
<td>10 mg (XL)</td>
<td>$48</td>
<td>$16</td>
<td>20 mg (XL)</td>
</tr>
<tr>
<td></td>
<td>• Glimepiride</td>
<td>4 mg</td>
<td>$71 ($71, $198)</td>
<td>8 mg</td>
<td></td>
</tr>
<tr>
<td>Meglitinides (glinides)</td>
<td>• Repaglinide</td>
<td>2 mg</td>
<td>$659 ($122, $673)</td>
<td>$40</td>
<td>16 mg</td>
</tr>
<tr>
<td></td>
<td>• Nateglinide</td>
<td>120 mg</td>
<td>$155</td>
<td>$56</td>
<td>360 mg</td>
</tr>
<tr>
<td>Thiazolidinediones</td>
<td>• Pioglitazone</td>
<td>45 mg</td>
<td>$348 ($283, $349)</td>
<td>$5</td>
<td>45 mg</td>
</tr>
<tr>
<td></td>
<td>• Rosiglitazone</td>
<td>4 mg</td>
<td>$387</td>
<td>$314</td>
<td>8 mg</td>
</tr>
<tr>
<td>α-Glucosidase inhibitors</td>
<td>• Acarbose</td>
<td>100 mg</td>
<td>$104 ($104, $106)</td>
<td>$25</td>
<td>300 mg</td>
</tr>
<tr>
<td></td>
<td>• Miglitol</td>
<td>100 mg</td>
<td>$241</td>
<td>N/A††</td>
<td>300 mg</td>
</tr>
<tr>
<td>DPP-4 inhibitors</td>
<td>• Sitagliptin</td>
<td>100 mg</td>
<td>$477</td>
<td>$382</td>
<td>100 mg</td>
</tr>
<tr>
<td></td>
<td>• Saxagliptin</td>
<td>5 mg</td>
<td>$462</td>
<td>$370</td>
<td>5 mg</td>
</tr>
<tr>
<td></td>
<td>• Linagliptin</td>
<td>5 mg</td>
<td>$457</td>
<td>$367</td>
<td>5 mg</td>
</tr>
<tr>
<td></td>
<td>• Alogliptin</td>
<td>25 mg</td>
<td>$449</td>
<td>$357</td>
<td>25 mg</td>
</tr>
<tr>
<td>Bile acid sequestrants</td>
<td>• Colesevelam</td>
<td>625 mg tabs</td>
<td>$713</td>
<td>$570</td>
<td>3.75 g</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.875 g suspension</td>
<td>$1,426</td>
<td>$572</td>
<td>3.75 g</td>
</tr>
<tr>
<td>Dopamine-2 agonists</td>
<td>• Bromocriptine</td>
<td>0.8 mg</td>
<td>$784</td>
<td>$629</td>
<td>4.8 mg</td>
</tr>
<tr>
<td>SGLT2 inhibitors</td>
<td>• Canagliflozin</td>
<td>300 mg</td>
<td>$512</td>
<td>$411</td>
<td>300 mg</td>
</tr>
<tr>
<td></td>
<td>• Dapagliflozin</td>
<td>10 mg</td>
<td>$517</td>
<td>$413</td>
<td>10 mg</td>
</tr>
<tr>
<td></td>
<td>• Empagliflozin</td>
<td>25 mg</td>
<td>$517</td>
<td>$415</td>
<td>25 mg</td>
</tr>
<tr>
<td>GLP-1 receptor agonists</td>
<td>• Exenatide</td>
<td>10 μg pen</td>
<td>$802</td>
<td>$642</td>
<td>20 μg</td>
</tr>
<tr>
<td></td>
<td>• Liraglutide</td>
<td>20 μg pen</td>
<td>$669</td>
<td>N/A††</td>
<td>20 μg</td>
</tr>
<tr>
<td></td>
<td>• Exenatide (extended release)</td>
<td>18 mg/3 mL pen</td>
<td>$968</td>
<td>$775</td>
<td>1.8 mg</td>
</tr>
<tr>
<td></td>
<td>• Exenatide (extended release)</td>
<td>2 mg powder for suspension or pen</td>
<td>$747</td>
<td>$600</td>
<td>2 mg**</td>
</tr>
<tr>
<td></td>
<td>• Albiglutide</td>
<td>50 mg pen</td>
<td>$626</td>
<td>$500</td>
<td>50 mg**</td>
</tr>
<tr>
<td></td>
<td>• Dulaglutide</td>
<td>1.5/0.5 mL pen</td>
<td>$811</td>
<td>$648</td>
<td>1.5 mg**</td>
</tr>
</tbody>
</table>

ER and XL, extended release; IR, immediate release. †Calculated for 30-day supply (AWP or NADAC unit price × number of doses required to provide maximum approved daily dose × 30 days); median AWP or NADAC listed alone when only one product and/or price. † Utilized to calculate median AWP and NADAC (min, max); generic prices used, if available commercially. ††Not applicable; data not available. †††Administered once weekly. ††††AWP and NADAC calculated based on 120 μg three times daily.
outcomes trials. Additional large randomized trials of other agents in these classes are ongoing.

Of note, these studies examined the drugs in combination with metformin (Table 9.4) in the great majority of patients for whom metformin was not contraindicated or not tolerated. For patients with type 2 diabetes who have ASCVD, on insulin is added to antihyperglycemic therapy, it is recommended to incorporate an agent with strong evidence for cardiovascular risk reduction especially those with proven benefit on both major adverse cardiovascular events and cardiovascular death after consideration of drug-specific patient factors (Table 8.1). See Fig. 8.1 for additional recommendations on antihyperglycemic treatment in adults with type 2 diabetes.

Insulin Therapy

Many patients with type 2 diabetes eventually require and benefit from insulin therapy. The progressive nature of type 2 diabetes should be regularly and objectively explained to patients. Providers should avoid using insulin as a threat or describing it as a sign of personal failure or punishment.

Equipping patients with an algorithm for self-titration of insulin doses based on self-monitoring of blood glucose improves glycemic control in patients with type 2 diabetes initiating insulin (42). Comprehensive education regarding self-monitoring of blood glucose, diet, and the avoidance of and appropriate treatment of hypoglycemia are critically important in any patient using insulin.

Basal Insulin

Basal insulin alone is the most convenient initial insulin regimen, beginning at 10 units per day or 0.1–0.2 units/kg/day, depending on the degree of hyperglycemia. Basal insulin is usually prescribed in conjunction with metformin and sometimes one additional noninsulin agent. When basal insulin is added to antihyperglycemic agents in patients with type 2 diabetes, long-acting basal analogs (U-100 glargine or detemir) can be used instead of NPH to reduce the risk of symptomatic and nocturnal hypoglycemia (43–48). Longer-acting basal analogs (U-300 glargine or degludec) may additionally convey a lower hypoglycemia risk compared with U-100 glargine when used in combination with oral antihyperglycemic agents (49–55). While there is evidence for reduced hypoglycemia with newer, longer-acting basal insulin analogs, people without a history of hypoglycemia are at decreased risk and could potentially be switched to human insulin safely. Thus, due to high costs of analog insulins, use of human insulin may be a practical option for some patients, and clinicians should be familiar with its use (56). Table 8.4 provides AWP (39) and NADAC (40) information (cost per 1,000 units) for currently available insulin and insulin combination products in the U.S. There have been substantial increases in the price of insulin over the past decade and the cost-effectiveness of different antihyperglycemic agents is an important consideration in a patient-centered approach to care, along with

Table 8.4—Median cost of insulin products in the U.S. calculated as AWP (39) and NADAC (40) per 1,000 units of specified dosage form/product

<table>
<thead>
<tr>
<th>Insulins</th>
<th>Compounds</th>
<th>Dosage form/product</th>
<th>Median AWP (min, max)*</th>
<th>Median NADAC (min, max)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapid-acting analogs</td>
<td>• Lispro</td>
<td>U-100 vial; U-100 3 mL cartridges; U-100 prefilled pen; U-200 prefilled pen</td>
<td>$330 $408 $424 $331 $410 $306 $394</td>
<td>$264 $326 $339 $265 $330 $245 $315</td>
</tr>
<tr>
<td></td>
<td>• Aspart</td>
<td>U-100 vial; U-100 3 mL cartridges; U-100 prefilled pen</td>
<td>$408 $424 $410 $426 $306 $394</td>
<td>$326 $339 $330 $341 $245 $315</td>
</tr>
<tr>
<td></td>
<td>• Glulisine</td>
<td>U-100 vial; U-100 prefilled pen; inhalation cartridges</td>
<td>$408 $424 $410 $426 $306 $394</td>
<td>$326 $339 $330 $341 $245 $315</td>
</tr>
<tr>
<td></td>
<td>• Inhaled insulin</td>
<td>U-100 vial; U-100 prefilled pen; inhalation cartridges</td>
<td>$408 $424 $410 $426 $306 $394</td>
<td>$326 $339 $330 $341 $245 $315</td>
</tr>
<tr>
<td>Short-acting analogs</td>
<td>• Human Regular</td>
<td>U-100 vial</td>
<td>$165 ($165, $178)</td>
<td>$135 ($135, $145)</td>
</tr>
<tr>
<td>Intermediate-acting analogs</td>
<td>• Human NPH</td>
<td>U-100 vial; U-100 prefilled pen</td>
<td>$165 ($165, $178)</td>
<td>$135 ($135, $145)</td>
</tr>
<tr>
<td>Concentrated Human Regular insulin</td>
<td>• U-500 Human Regular insulin</td>
<td>U-500 vial; U-500 prefilled pen</td>
<td>$178 $230</td>
<td>$143 $184</td>
</tr>
<tr>
<td>Basal analogs</td>
<td>• Glargine</td>
<td>U-100 vial; U-100 prefilled pen; U-300 prefilled pen</td>
<td>$298 $253 $323 $355</td>
<td>$239 ($239, $241) $203 $259 $285</td>
</tr>
<tr>
<td></td>
<td>• Glargine biosimilar</td>
<td>U-100 prefilled pen</td>
<td>$253</td>
<td>$203</td>
</tr>
<tr>
<td></td>
<td>• Detemir</td>
<td>U-100 vial; U-100 prefilled pen</td>
<td>$323</td>
<td>$259</td>
</tr>
<tr>
<td></td>
<td>• Degludec</td>
<td>U-100 vial; U-100 prefilled pen; U-200 prefilled pen</td>
<td>$355</td>
<td>$285</td>
</tr>
<tr>
<td>Premixed insulin products</td>
<td>• NPH/Regular 70/30</td>
<td>U-100 vial; U-100 prefilled pen</td>
<td>$165 ($165, $178)</td>
<td>$134 ($134, $146)</td>
</tr>
<tr>
<td></td>
<td>• Lispro 50/50</td>
<td>U-100 vial; U-100 prefilled pen</td>
<td>$377 $342 $424 $324 $424 $342 $424</td>
<td>$305 $278 $339 $273 $340 $275 $341</td>
</tr>
<tr>
<td></td>
<td>• Lispro 75/25</td>
<td>U-100 vial; U-100 prefilled pen</td>
<td>$342</td>
<td>$273</td>
</tr>
<tr>
<td></td>
<td>• Aspart 70/30</td>
<td>U-100 vial; U-100 prefilled pen</td>
<td>$343</td>
<td>$275</td>
</tr>
<tr>
<td></td>
<td>• Aspart 70/30</td>
<td>U-100 vial; U-100 prefilled pen</td>
<td>$426</td>
<td>$341</td>
</tr>
<tr>
<td>Premixed insulin/GLP-1 receptor agonist products</td>
<td>• Degludec/Liraglutide</td>
<td>100/3.6 prefilled pen</td>
<td>$763</td>
<td>N/A†</td>
</tr>
<tr>
<td></td>
<td>• Glargine/Lixisenatide</td>
<td>100/33 prefilled pen</td>
<td>$508</td>
<td>$404</td>
</tr>
</tbody>
</table>

*AWP or NADAC calculated as in Table 8.3; median listed alone when only one product and/or price. †Not applicable; data not available.
efficacy, hypoglycemia risk, weight, and other patient and drug-specific factors (Table 8.1) (57).

Bolus Insulin

Many individuals with type 2 diabetes may require mealtime bolus insulin dosing in addition to basal insulin. Rapid-acting analogs are preferred due to their prompt onset of action after dosing. In September 2017, the FDA approved a new faster-acting formulation of insulin aspart. The recommended starting dose of mealtime insulin is 4 units, 0.1 units/kg, or 10% of the basal dose. If A1C is <8% (64 mmol/mol) when starting mealtime bolus insulin, consideration should be given to decreasing the basal insulin dose.

Premixed Insulin

Premixed insulin products contain both a basal and prandial component, allowing coverage of both basal and prandial needs with a single injection. NPH/Regular 70/30 insulin, for example, is composed of 70% NPH insulin and 30% regular insulin. The use of premixed insulin products has its advantages and disadvantages, as discussed below in COMBINATION INJECTABLE THERAPY.

Concentrated Insulin Products

Several concentrated insulin preparations are currently available. U-500 regular insulin, by definition, is five times as concentrated as U-100 regular insulin and has a delayed onset and longer duration of action than U-100 regular, possessing both prandial and basal properties. U-300 glargine and U-200 degludec are three and two times as concentrated as their U-100 formulations and allow higher doses of basal insulin administration per volume used. U-300 glargine has a longer duration of action than U-100 glargine. The FDA has also approved a concentrated formulation of rapid-acting insulin lispro, U-200 (200 units/mL). These concentrated preparations may be more comfortable for the patient and may improve adherence for patients with insulin resistance who require large doses of insulin. While U-500 regular insulin is available in both prefilled pens and vials (a dedicated syringe was FDA approved in July 2016), other concentrated insulins are available only in prefilled pens to minimize the risk of dosing errors.

Inhaled Insulin

Inhaled insulin is available for prandial use with a more limited dosing range. It is contraindicated in patients with chronic lung disease such as asthma and chronic obstructive pulmonary disease and is not recommended in patients who smoke or who recently stopped smoking. It requires spirometry (FEV1) testing to identify potential lung disease in all patients prior to and after starting therapy.

Combination Injectable Therapy

If basal insulin has been titrated to an acceptable fasting blood glucose level (or if the dose is >0.5 units/kg/day) and A1C remains above target, consider advancing to combination injectable therapy (Fig. 8.2). When initiating combination injectable therapy, metformin therapy should be maintained while other oral agents may be discontinued on an individual basis to avoid unnecessarily complex or costly regimens (i.e., adding a fourth anti-hyperglycemic agent). In general, GLP-1 receptor agonists should not be discontinued with the initiation of basal insulin. Sulfonylureas, DPP-4 inhibitors, and GLP-1 receptor agonists are typically stopped once more complex insulin regimens beyond basal are used. In patients with suboptimal blood glucose control, especially those requiring large insulin doses, adjunctive use of a thiazolidinedione or SGLT2 inhibitor may help to improve control and reduce the amount of insulin needed, though potential side effects should be considered. Once an insulin regimen is initiated, dose titration is important with adjustments made in both mealtime and basal insulin based on the blood glucose levels and an understanding of the pharmacodynamic profile of each formulation (pattern control).

Studies have demonstrated the non-inferiority of basal insulin plus a single injection of rapid-acting insulin at the largest meal relative to basal insulin plus a GLP-1 receptor agonist relative to two daily injections of premixed insulins (Fig. 8.2). Basal insulin plus GLP-1 receptor agonists are associated with less hypoglycemia and with weight loss instead of weight gain but may be less tolerable and have a greater cost (58,59). In November 2016, the FDA approved two different once-daily fixed-dual combination products containing basal insulin plus a GLP-1 receptor agonist: insulin glargine plus lixisenatide and insulin degludec plus lixisenatide. Other options for treatment intensification include adding a single injection of rapid-acting insulin analog (lispro, aspart, or glulisine) before the largest meal or stopping the basal insulin and initiating a premixed (or biphasic)

References

2. Chiang JL, Kirkman MS, Laffel LMB, Peters AL; Type 1 Diabetes Sourcebook Authors. Type 1 diabetes through the life span: a position statement of the American Diabetes Association. Diabetes Care 2014;37:2034–2054

20. Home PD, Bergenstal RM, Bolli GB, et al. New insulin glargine 300 units/mL versus glargine 100 units/mL in people with type 1 diabetes: a randomized, phase 3a, open-label clinical trial (EDITION 4). Diabetes Care 2015:2217–2225

42. Blonde L, Merilainen M, Karve V, Raskin P; TITRATE Study Group. Patient-directed titra-tion for achieving glycemic goals using a once-daily basal insulin analogue: an assessment of

49. Bolli GB, Riddle MC, Bergenstal RM, et al.; EDITION 3 Study Investigators. New insulin glargine 300 U/mL compared with glargine 100 U/mL in insulin-naive people with type 2 diabetes on oral glucose-lowering drugs: a randomized controlled trial (EDITION 3). Diabetes Obes Metab 2015;17:386–394.

9. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes—2018

The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

For prevention and management of diabetes complications in children and adolescents, please refer to Section 12 “Children and Adolescents.”

Atherosclerotic cardiovascular disease (ASCVD)—defined as coronary heart disease, cerebrovascular disease, or peripheral arterial disease presumed to be of atherosclerotic origin—is the leading cause of morbidity and mortality for individuals with diabetes and is the largest contributor to the direct and indirect costs of diabetes. Common conditions coexisting with type 2 diabetes (e.g., hypertension and dyslipidemia) are clear risk factors for ASCVD, and diabetes itself confers independent risk. Numerous studies have shown the efficacy of controlling individual cardiovascular risk factors in preventing or slowing ASCVD in people with diabetes. Furthermore, large benefits are seen when multiple cardiovascular risk factors are addressed simultaneously. Under the current paradigm of aggressive risk factor modification in patients with diabetes, there is evidence that measures of 10-year coronary heart disease (CHD) risk among U.S. adults with diabetes have improved significantly over the past decade (1) and that ASCVD morbidity and mortality have decreased (2–4).

Therefore, cardiovascular risk factors should be systematically assessed at least annually in all patients with diabetes. These risk factors include hypertension, dyslipidemia, smoking, a family history of premature coronary disease, chronic kidney disease, and the presence of albuminuria. Modifiable abnormal risk factors should be treated as described in these guidelines.

HYPERTENSION/BLOOD PRESSURE CONTROL

Hypertension, defined as a sustained blood pressure ≥140/90 mmHg, is common among patients with either type 1 or type 2 diabetes. Hypertension is a major risk factor for both ASCVD and microvascular complications. Moreover, numerous studies have shown that antihypertensive therapy reduces ASCVD events, heart failure, and microvascular complications. Please refer to the American Diabetes Association (ADA)
position statement "Diabetes and Hypertension" for a detailed review of the epidemiology, diagnosis, and treatment of hypertension (5).

Screening and Diagnosis

Recommendations
- Blood pressure should be measured at every routine clinical visit. Patients found to have elevated blood pressure (≥140/90) should have blood pressure confirmed using multiple readings, including measurements on a separate day, to diagnose hypertension. B
- All hypertensive patients with diabetes should monitor their blood pressure at home. B
- Lower systolic and diastolic blood pressure targets, such as 130/80 mmHg, may be appropriate for individuals at high risk of cardiovascular disease, if they can be achieved without undue treatment burden. C
- In pregnant patients with diabetes and preexisting hypertension who are treated with antihypertensive therapy, blood pressure targets of 120–160/80–105 mmHg are suggested in the interest of optimizing long-term maternal health and minimizing impaired fetal growth. E

Randomized clinical trials have demonstrated unequivocally that treatment of hypertension to blood pressure <140/90 mmHg reduces cardiovascular events as well as microvascular complications (9–15). Therefore, patients with type 1 or type 2 diabetes who have hypertension should, at a minimum, be treated to blood pressure targets of <140/90 mmHg. Intensification of antihypertensive therapy to target blood pressures lower than <140/90 mmHg (e.g., <130/80 or <120/80 mmHg) may be beneficial for selected patients with diabetes such as those with a high risk of cardiovascular disease. Such intensive blood pressure control has been evaluated in large randomized clinical trials and meta-analyses of clinical trials.

Randomized Controlled Trials of Intensive Versus Standard Blood Pressure Control

The Action to Control Cardiovascular Risk in Diabetes blood pressure (ACCORD BP) trial provides the strongest direct assessment of the benefits and risks of intensive blood pressure control among people with type 2 diabetes (16). In ACCORD BP, compared with standard blood pressure control (target systolic blood pressure <140 mmHg), intensive blood pressure control (target systolic blood pressure <120 mmHg) did not reduce total major atherosclerotic cardiovascular events but did reduce the risk of stroke, at the expense of increased adverse events (Table 9.1). The ACCORD BP results suggest that blood pressure targets more intensive than <140/90 mmHg are not likely to improve cardiovascular outcomes among most people with type 2 diabetes but may be reasonable in selected patients who have been educated about added treatment burden, side effects, and costs, as discussed below.

Additional studies, such as the Systolic Blood Pressure Intervention Trial (SPRINT) and the Hypertension Optimal Treatment (HOT) trial, also examined effects of intensive versus standard control (Table 9.1), though the relevance of their results to people with diabetes is less clear. The Action in Diabetes and Vascular Disease: Preterax and Diamicron MR Controlled Evaluation–Blood Pressure (ADVANCE BP) trial did not explicitly test blood pressure targets (17); the achieved blood pressure in the intervention group was higher than that achieved in the ACCORD BP intensive arm and would be consistent with a target blood pressure of <140/90 mmHg. Notably, ACCORD BP and SPRINT measured blood pressure using automated office blood pressure measurements, which yields values that are generally lower than typical office blood pressure readings by approximately 5–10 mmHg (18), suggesting that implementing the ACCORD BP or SPRINT protocols in an outpatient clinic might require a systolic blood pressure target higher than <120 mmHg.

Meta-analyses of Trials

To clarify optimal blood pressure targets in patients with diabetes, meta-analyses have stratified clinical trials by mean baseline blood pressure or mean blood pressure attained in the intervention (or intensive treatment) arm. Based on these analyses, antihypertensive treatment appears to be beneficial when mean baseline blood pressure is ≥140/90 mmHg or mean attained intensive blood pressure is ≥130/80 mmHg (5,9,12–14). Among trials with lower baseline or attained blood pressure, antihypertensive treatment reduced the risk of stroke, retinopathy, and albuminuria, but effects on other ASCVD outcomes and heart failure were not evident. Taken together, these meta-analyses consistently show that treating patients with baseline blood pressure ≥140 mmHg to targets <140 mmHg is beneficial, while more intensive targets may offer additional, though probably less robust, benefits.

Individualization of Treatment Targets

Patients and clinicians should engage in a shared decision-making process to determine individual blood pressure targets,
with the acknowledgment that the benefits and risks of intensive blood pressure targets are uncertain and may vary across patients (5). Similar to the factors that influence management of hyperglycemia, factors that influence blood pressure treatment targets may include risks of treatment (e.g., hypotension, drug adverse effects), life expectancy, comorbidities including vascular complications, patient attitude and expected treatment efforts, and resources and support system (19). Specific factors to consider are the absolute risk of cardiovascular events (15,20); risk of progressive kidney disease as reflected by albuminuria, adverse effects, age, and overall treatment burden. Patients who have higher risk of cardiovascular events (particularly stroke) or albuminuria and who are able to attain intensive blood pressure control relatively easily and without substantial adverse effects may be best suited for intensive blood pressure targets. In contrast, patients with conditions more common in older adults, such as functional limitations, polypharmacy, and multimorbidity, may be best suited for less intensive blood pressure targets. Notably, there is an absence of high-quality data available to guide blood pressure targets in type 1 diabetes.

Based on current evidence, ADA recommends hypertension diagnosis and treatment as outlined, emphasizing individualization of blood pressure targets. ADA is aware of hypertension recommendations from other organizations (20a). The ADA Professional Practice Committee continuously reviews and considers all studies, particularly high-quality trials including people with diabetes, for potential incorporation in future recommendations.

Treatment Strategies

Lifestyle Strategies

Recommendation

- For patients with blood pressure $>120/80$ mmHg, lifestyle intervention consists of weight loss if overweight or obese; a Dietary Approaches to Stop Hypertension–style dietary pattern including reducing sodium and increasing potassium intake; moderation of alcohol intake; and increased physical activity.

Lifestyle management is an important component of hypertension treatment because it lowers blood pressure, enhances the effectiveness of some antihypertensive medications, promotes other aspects of metabolic and vascular health, and generally leads to few adverse effects. Lifestyle therapy consists of reducing excess body weight through caloric restriction, restricting sodium intake ($<2,300$ mg/day), increasing consumption of fruits and vegetables (8–10 servings per day) and low-fat dairy products (2–3 servings per day), avoiding excessive alcohol consumption (no more than 2 servings per day in men and no more than 1 serving per day in women) (21), and increasing activity levels (22).

Table 9.1—Randomized controlled trials of intensive versus standard hypertension treatment strategies

<table>
<thead>
<tr>
<th>Clinical trial</th>
<th>Population</th>
<th>Intensive</th>
<th>Standard</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCORD BP (16)</td>
<td>4,733 participants with T2D aged 40–79 years with prior evidence of CVD or multiple cardiovascular risk factors</td>
<td>Systolic blood pressure target: <120 mmHg</td>
<td>Systolic blood pressure target: 130–140 mmHg</td>
<td>• No benefit in primary end point: composite of nonfatal MI, nonfatal stroke, and CVD death</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Achieved (mean) systolic/diastolic: 119.3/64.4 mmHg</td>
<td>Achieved (mean) systolic/diastolic: 133.5/70.5 mmHg</td>
<td>• Stroke risk reduced 41% with intensive control, not sustained through follow-up beyond the period of active treatment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Achieved (mean) systolic/diastolic: 136/73 mmHg</td>
<td>Achieved (mean) systolic/diastolic: 141.6/75.2 mmHg</td>
<td>• Adverse events more common in intensive group, particularly elevated serum creatinine and electrolyte abnormalities</td>
</tr>
<tr>
<td>ADVANCE BP (17)</td>
<td>11,140 participants with T2D aged 55 years and older with prior evidence of CVD or multiple cardiovascular risk factors</td>
<td>Intervention: a single-pill, fixed-dose combination of perindopril and indapamide</td>
<td>Control: placebo</td>
<td>• Intervention reduced risk of primary composite end point of major macrovascular and microvascular events (9%), death from any cause (14%), and death from CVD (18%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Achieved (mean) systolic/diastolic: 136/73 mmHg</td>
<td>Achieved (mean) systolic/diastolic: 141.6/75.2 mmHg</td>
<td>• 6-year observational follow-up found reduction in risk of death in intervention group attenuated but still significant (142)</td>
</tr>
<tr>
<td>HOT (143)</td>
<td>18,790 participants, including 1,501 with diabetes</td>
<td>Diastolic blood pressure target: ≤ 80 mmHg</td>
<td>Diastolic blood pressure target: ≤ 90 mmHg</td>
<td>• In the overall trial, there was no cardiovascular benefit with more intensive targets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Achieved (mean): 121.4 mmHg</td>
<td>Achieved (mean): 136.2 mmHg</td>
<td>• In the subpopulation with diabetes, an intensive diastolic target was associated with a significantly reduced risk (51%) of CVD events</td>
</tr>
<tr>
<td>SPRINT (144)</td>
<td>9,361 participants without diabetes</td>
<td>Systolic blood pressure target: <120 mmHg</td>
<td>Systolic blood pressure target: <140 mmHg</td>
<td>• Intensive systolic blood pressure target lowered risk of the primary composite outcome 25% (MI, ACS, stroke, heart failure, and death due to CVD)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Achieved (mean): 121.4 mmHg</td>
<td>Achieved (mean): 136.2 mmHg</td>
<td>• Intensive target reduced risk of death 27%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Achieved (mean): 136/73 mmHg</td>
<td>Achieved (mean): 141.6/75.2 mmHg</td>
<td>• Intensive therapy increased risks of electrolyte abnormalities and AKI</td>
</tr>
</tbody>
</table>

CVD, cardiovascular disease; T2D, type 2 diabetes. Data from this table can also be found in the ADA position statement “Diabetes and Hypertension” (5).
These lifestyle interventions are reasonable for individuals with diabetes and mildly elevated blood pressure (systolic >120 mmHg or diastolic >80 mmHg) and should be initiated along with pharmacologic therapy when hypertension is diagnosed (Fig. 9.1) (22). A lifestyle therapy plan should be developed in collaboration with the patient and discussed as part of diabetes management.

Pharmacologic Interventions

Recommendations

- Patients with confirmed office-based blood pressure ≥140/90 mmHg should, in addition to lifestyle therapy, have prompt initiation and timely titration of pharmacologic therapy to achieve blood pressure goals. A
- Patients with confirmed office-based blood pressure ≥160/100 mmHg should, in addition to lifestyle therapy, have prompt initiation and timely titration of two drugs or a single-pill combination of drugs demonstrated to reduce cardiovascular events in patients with diabetes. A
- Treatment for hypertension should include drug classes demonstrated to reduce cardiovascular events in patients with diabetes (ACE inhibitors, angiotensin receptor blockers, thiazide-like diuretics, or dihydropyridine calcium channel blockers). A
- Multiple-drug therapy is generally required to achieve blood pressure targets. However, combinations of ACE inhibitors and angiotensin receptor blockers and combinations of ACE inhibitors or angiotensin receptor blockers with direct renin inhibitors should not be used. A
- An ACE inhibitor or angiotensin receptor blocker, at the maximumly tolerated dose indicated for blood pressure treatment, is the recommended first-line treatment for hypertension in patients with diabetes and urinary albumin-to-creatinine ratio ≥300 mg/g creatinine A or 30–299 mg/g creatinine B. If one class is not tolerated, the other should be substituted. B
- For patients treated with an ACE inhibitor, angiotensin receptor blocker, or diuretic, serum creatinine/estimated glomerular filtration rate and serum potassium levels should be monitored at least annually. B

Initial Number of Antihypertensive Medications

Initial treatment for people with diabetes depends on the severity of hypertension (Fig. 9.1). Those with blood pressure between 140/90 mmHg and 159/99 mmHg may begin with a single drug. For patients with blood pressure ≥160/100 mmHg, initial pharmacologic treatment with two antihypertensive medications is recommended in order to more effectively achieve adequate blood pressure control (23,24). Single-pill antihypertensive combinations may improve medication adherence in some patients (25).

Classes of Antihypertensive Medications

Initial treatment for hypertension should include any of the drug classes demonstrated to reduce cardiovascular events in patients with diabetes: ACE inhibitors (26,27), angiotensin receptor blockers (ARBs) (26,27), thiazide-like diuretics (28), or dihydropyridine calcium channel blockers (29). For patients with albuminuria (urine albumin-to-creatinine ratio [UACR] ≥30 mg/g), initial treatment should include an ACE inhibitor or ARB in order to reduce the risk of progressive kidney disease (5) (Fig. 9.1). In the absence of albuminuria, risk of progressive kidney disease is low, and ACE inhibitors and ARBs have not been found to afford superior cardioprotection when compared with thiazide-like diuretics or dihydropyridine calcium channel blockers (30). β-Blockers may be used for the treatment of prior myocardial infarction (MI), active angina, or heart failure but have not been shown to reduce mortality as blood pressure-lowering agents in the absence of these conditions (11,31).

Multiple-Drug Therapy

Multiple-drug therapy is often required to achieve blood pressure targets (Fig. 9.1), particularly in the setting of diabetic kidney disease. However, the use of both ACE inhibitors and ARBs in combination, or the combination of an ACE inhibitor or ARB and a direct renin inhibitor, is not recommended given the lack of added ASCVD benefit and increased rate of adverse events—namely, hyperkalemia, syncope, and acute kidney injury (AKI) (32–34). Titration of and/or addition of further blood pressure medications should be made in a timely fashion to overcome clinical inertia in achieving blood pressure targets.

Bedtime Dosing

Growing evidence suggests that there is an association between the absence of nocturnal blood pressure dipping and the incidence of ASCVD. A meta-analysis of randomized clinical trials found a small benefit of evening versus morning dosing of antihypertensive medications with regard to blood pressure control but had no data on clinical effects (35). In two subgroup analyses of a single subsequent randomized controlled trial, moving at least one antihypertensive medication to bedtime significantly reduced cardiovascular events, but results were based on a small number of events (36).

Hyperkalemia and AKI

Treatment with ACE inhibitors or ARBs can cause AKI and hyperkalemia, while diuretics can cause AKI and either hypokalemia or hyperkalemia (depending on mechanism of action) (37,38). Detection and management of these abnormalities is important because AKI and hyperkalemia each increase the risks of cardiovascular events and death (39). Therefore, serum creatinine and potassium should be monitored during treatment with an ACE inhibitor, ARB, or diuretic, particularly among patients with reduced glomerular filtration who are at increased risk of hyperkalemia and AKI (37,38,40).

Resistant Hypertension

Recommendation

- Patients with hypertension who are not meeting blood pressure targets on three classes of antihypertensive medications (including a diuretic) should be considered for mineralocorticoid receptor antagonist therapy. B

Resistant hypertension is defined as blood pressure ≥140/90 mmHg despite a therapeutic strategy that includes appropriate lifestyle management plus a diuretic and two other antihypertensive drugs belonging to different classes at adequate doses. Prior to diagnosing resistant hypertension, a number of other conditions should be excluded, including medication nonadherence, white coat hypertension, and secondary hypertension. In general, barriers to medication adherence (such as cost and side effects) should be identified and addressed (Fig. 9.1). Mineralocorticoid receptor antagonists are effective for management of resistant hypertension in patients with type 2 diabetes when added to existing treatment with a ACE inhibitor or ARB, thiazide-like diuretic, and dihydropyridine calcium channel blocker (41). Mineralocorticoid receptor antagonists also reduce albuminuria and have
Recommendations for the Treatment of Confirmed Hypertension in People With Diabetes

Figure 9.1—Recommendations for the treatment of confirmed hypertension in people with diabetes. *An ACE inhibitor (ACEi) or ARB is suggested to treat hypertension for patients with UACR 30–299 mg/g creatinine and strongly recommended for patients with UACR ≥300 mg/g creatinine. **Thiazide-like diuretic; long-acting agents shown to reduce cardiovascular events, such as chlorthalidone and indapamide, are preferred. ***Dihydropyridine calcium channel blocker. BP, blood pressure. This figure can also be found in the ADA position statement "Diabetes and Hypertension" (5).

Additional cardiovascular benefits (42–45). However, adding a mineralocorticoid receptor antagonist to a regimen including an ACE inhibitor or ARB may increase the risk for hyperkalemia, emphasizing the importance of regular monitoring for serum creatinine and potassium in these patients, and long-term outcome studies are needed to better evaluate the role of mineralocorticoid receptor antagonists in blood pressure management.

Pregnancy and Antihypertensive Medications. Since there is a lack of randomized controlled trials of antihypertensive therapy in pregnant women with diabetes, recommendations for the management of hypertension in pregnant women with
diabetes should be similar to those for all pregnant women. The American College of Obstetricians and Gynecologists (ACOG) has recommended that women with mild to moderate gestational hypertension (systolic blood pressure <160 mmHg or diastolic blood pressure <110 mmHg) do not need to be treated with antihypertensive medications as there is no benefit identified that clearly outweighs potential risks of therapy (46). A 2014 Cochrane systematic review of antihypertensive therapy for mild to moderate chronic hypertension that included 49 trials and over 4,700 women did not find any conclusive evidence for or against blood pressure treatment to reduce the risk of preeclampsia for the mother or effects on perinatal outcomes such as preterm birth, small for-gestational-age infants, or fetal death (47). For pregnant women who require antihypertensive therapy, systolic blood pressure levels of 120–160 mmHg and diastolic blood pressure levels of 80–105 mmHg are suggested to optimize maternal health without risking fetal harm. Lower targets (systolic blood pressure 110–119 mmHg and diastolic blood pressure 65–79 mmHg) may contribute to improved long-term maternal health; however, they may be associated with impaired fetal growth. Pregnant women with hypertension and evidence of end-organ damage from cardiovascular and/or renal disease may be considered for lower blood pressure targets to avoid progression of these conditions during pregnancy.

During pregnancy, treatment with ACE inhibitors, ARBs, and spironolactone are contraindicated as they may cause fetal damage. Antihypertensive drugs known to be effective and safe in pregnancy include methyldopa, labetalol, and long-acting nifedipine, while hydralazine may be considered in the acute management of hypertension in pregnancy or severe preeclampsia (46). Diuretics are not recommended for blood pressure control in pregnancy but may be used during late-stage pregnancy if needed for volume control (46,48). ACOG also recommends that postpartum patients with gestational hypertension, preeclampsia, and superimposed preeclampsia have their blood pressures observed for 72 h in the hospital and for 7–10 days postpartum. Long-term follow-up is recommended for these women as they have increased lifetime cardiovascular risk (49). See Section 13 “Management of Diabetes in Pregnancy” for additional information.

LIPID MANAGEMENT

Lifestyle Intervention

Recommendations

- Lifestyle modification focusing on weight loss (if indicated); the reduction of saturated fat, trans fat, and cholesterol intake; increase of dietary n-3 fatty acids, viscous fiber, and plant stanol/stereols intake; and increased physical activity should be recommended to improve the lipid profile in patients with diabetes.
- Intensify lifestyle therapy and optimize glycemic control for patients with elevated triglyceride levels (≥150 mg/dL [1.7 mmol/L]) and/or low HDL cholesterol (<40 mg/dL [1.0 mmol/L] for men, <50 mg/dL [1.3 mmol/L] for women).

Lifestyle intervention, including weight loss, increased physical activity, and medical nutrition therapy, allows some patients to reduce ASCVD risk factors. Nutrition intervention should be tailored according to each patient's age, diabetes type, pharmacologic treatment, lipid levels, and medical conditions.

Recommendations should focus on reducing saturated fat, cholesterol, and trans fat intake and increasing plant stanol/stereols, n-3 fatty acids, and viscous fiber (such as in oats, legumes, and citrus) intake. Glycemic control may also beneficially modify plasma lipid levels, particularly in patients with very high triglycerides and poor glycemic control. See Section 4 “Lifestyle Management” for additional nutrition information.

Ongoing Therapy and Monitoring With Lipid Panel

Recommendations

- In adults not taking statins or other lipid-lowering therapy, it is reasonable to obtain a lipid profile at the time of diabetes diagnosis, at an initial medical evaluation, and every 5 years thereafter if under the age of 40 years, or more frequently if indicated.
- Obtain a lipid profile at initiation of statins or other lipid-lowering therapy, 4–12 weeks after initiation or a change in dose, and annually thereafter as it may help to monitor the response to therapy and inform adherence.

In adults with diabetes, it is reasonable to obtain a lipid profile (total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides) at the time of diagnosis, at the initial medical evaluation, and at least every 5 years thereafter in patients under the age of 40 years. In younger patients with longer duration of disease (such as those with youth-onset type 1 diabetes), more frequent lipid profiles may be reasonable. A lipid panel should also be obtained immediately before initiating statin therapy. Once a patient is taking a statin, LDL cholesterol levels should be assessed 4–12 weeks after initiation of statin therapy, after any change in dose, and on an individual basis (e.g., to monitor for medication adherence and efficacy). In cases where patients are adherent but the LDL cholesterol level is not responding, clinical judgment is recommended to determine the need for and timing of lipid panels. In individual patients, the highly variable LDL cholesterol–lowering response seen with statins is poorly understood (50). Clinicians should attempt to find a dose or alternative statin that is tolerable, if side effects occur. There is evidence for benefit from even extremely low, less than daily statin doses (51).

Statin Treatment

Recommendations

- For patients of all ages with diabetes and atherosclerotic cardiovascular disease, high-intensity statin therapy should be added to lifestyle therapy.
- For patients with diabetes aged <40 years with additional atherosclerotic cardiovascular disease risk factors, the patient and provider should consider using moderate-intensity statin in addition to lifestyle therapy.
- For patients with diabetes aged 40–75 years A and >75 years B without atherosclerotic cardiovascular disease, use moderate-intensity statin in addition to lifestyle therapy.
- In clinical practice, providers may need to adjust the intensity of statin therapy based on individual patient response to medication (e.g., side effects, tolerability, LDL cholesterol levels, or percent LDL reduction on statin therapy). For patients who do not tolerate the intended intensity...
of statin, the maximally tolerated statin dose should be used. E

- For patients with diabetes and atherosclerotic cardiovascular disease, if LDL cholesterol is ≥ 70 mg/dL on maximally tolerated statin dose, consider adding additional LDL-lowering therapy (such as ezetimibe or PCSK9 inhibitor) after evaluating the potential for further atherosclerotic cardiovascular disease risk reduction, drug-specific adverse effects, and patient preferences. Ezetimibe may be preferred due to lower cost. A

- Statin therapy is contraindicated in pregnancy. B

Initiating Statin Therapy Based on Risk

Patients with type 2 diabetes have an increased prevalence of lipid abnormalities, contributing to their high risk of ASCVD. Multiple clinical trials have demonstrated the beneficial effects of statin therapy on ASCVD outcomes in subjects with and without CHD (52,53). Subgroup analyses of patients with diabetes in larger trials (54–58) and trials in patients with diabetes (59,60) showed significant primary and secondary prevention of ASCVD events and CHD death in patients with diabetes. Meta-analyses, including data from over 18,000 patients with diabetes from 14 randomized trials of statin therapy (mean follow-up 4.3 years), demonstrate a 9% proportional reduction in all-cause mortality and 13% reduction in vascular mortality for each mmol/L (39 mg/dL) reduction in LDL cholesterol (61).

Accordingly, statins are the drugs of choice for LDL cholesterol lowering and cardioprotection. Table 9.2 shows recommended lipid-lowering strategies, and Table 9.3 shows the two statin dosing intensities that are recommended for use in clinical practice: high-intensity statin therapy will achieve approximately a 50% reduction in LDL cholesterol, and moderate-intensity statin regimens achieve 30–50% reductions in LDL cholesterol. Low-dose statin therapy is generally not recommended in patients with diabetes but is sometimes the only dose of statin that a patient can tolerate. For patients who do not tolerate the intended intensity of statin, the maximally tolerated statin dose should be used.

As in those without diabetes, absolute reductions in ASCVD outcomes (CHD death and nonfatal MI) are greatest in people with high baseline ASCVD risk (known ASCVD and/or very high LDL cholesterol levels), but the overall benefits of statin therapy in people with diabetes at moderate or even low risk for ASCVD are convincing (62,63). The relative benefit of lipid-lowering therapy has been uniform across most subgroups tested (53,61), including subgroups that varied with respect to age and other risk factors.

Risk Stratification

Two broad groups of patients exist for management of cardiovascular risk: those with documented ASCVD (as defined above) and those without; treatment is often referred to as “secondary” and “primary” prevention, respectively. Because risk is higher in patients with ASCVD, more intensive therapy is indicated and has been shown to be of benefit in multiple large randomized cardiovascular outcomes trials (61,64–66).

The Risk Calculator

The American College of Cardiology/American Heart Association ASCVD risk calculator is generally a useful tool to estimate 10-year ASCVD risk (my.americanheart.org). However, as diabetes itself confers increased risk for ASCVD and risk calculators in general do not account for the duration of diabetes or the presence of other complications such as albuminuria, the risk calculator has limited use for assessing cardiovascular risk in individuals with diabetes.

Recently, risk scores and other cardiovascular biomarkers have been developed for risk stratification of secondary prevention patients (i.e., those who are already high risk because they have ASCVD) but are not yet in widespread use (67,68). With newer, more expensive lipid-lowering therapies now available, use of these risk assessments may help target these new therapies to “higher risk” ASCVD patients in the future.

Table 9.2—Recommendations for statin and combination treatment in adults with diabetes

<table>
<thead>
<tr>
<th>Age</th>
<th>ASCVD</th>
<th>Recommended statin intensity* and combination treatment*</th>
</tr>
</thead>
<tbody>
<tr>
<td><40 years</td>
<td>No</td>
<td>None†</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If LDL cholesterol ≥ 70 mg/dL despite maximally tolerated statin dose, consider adding additional LDL-lowering therapy (such as ezetimibe or PCSK9 inhibitor)†</td>
</tr>
<tr>
<td>≥40 years</td>
<td>No</td>
<td>Moderate†</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If LDL cholesterol ≥ 70 mg/dL despite maximally tolerated statin dose, consider adding additional LDL-lowering therapy (such as ezetimibe or PCSK9 inhibitor)†</td>
</tr>
</tbody>
</table>

*In addition to lifestyle therapy. †For patients who do not tolerate the intended intensity of statin, the maximally tolerated statin dose should be used. Moderate-intensity statin may be considered based on risk-benefit profile and presence of ASCVD risk factors. ASCVD risk factors include LDL cholesterol ≥ 100 mg/dL (2.6 mmol/L), high blood pressure, smoking, chronic kidney disease, albuminuria, and family history of premature ASCVD. High-intensity statin may be considered based on risk-benefit profile and presence of ASCVD risk factors. Adults aged <40 years with prevalent ASCVD were not well represented in clinical trials of non-statin-based LDL reduction. Before initiating combination lipid-lowering therapy, consider the potential for further ASCVD risk reduction, drug-specific adverse effects, and patient preferences.

Table 9.3—High-intensity and moderate-intensity statin therapy*

<table>
<thead>
<tr>
<th>High-intensity statin therapy (lowers LDL cholesterol by ≈50%)</th>
<th>Moderate-intensity statin therapy (lowers LDL cholesterol by 30% to 50%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atorvastatin 40–80 mg</td>
<td>Atorvastatin 10–20 mg</td>
</tr>
<tr>
<td>Rosuvastatin 20–40 mg</td>
<td>Rosuvastatin 5–10 mg</td>
</tr>
<tr>
<td>Simvastatin 20–40 mg</td>
<td>Simvastatin 10–20 mg</td>
</tr>
<tr>
<td>Pravastatin 40–80 mg</td>
<td>Pravastatin 10–20 mg</td>
</tr>
<tr>
<td>Lovastatin 40 mg</td>
<td>Fluvastatin 80 mg</td>
</tr>
<tr>
<td>Fluvastatin XL 80 mg</td>
<td>Pitavastatin 2–4 mg</td>
</tr>
</tbody>
</table>

*Once-daily dosing. XL, extended release.
Primary Prevention (Patients Without ASCVD)
For primary prevention, moderate-dose statin therapy is recommended for those 40 years and older (55,62,63), though high-intensity therapy may be considered on an individual basis in the context of additional ASCVD risk factors. The evidence is strong for patients with diabetes aged 40-75 years, an age-group well represented in statin trials showing benefit.

The evidence is lower for patients aged >75 years; relatively few older patients with diabetes have been enrolled in primary prevention trials. However, heterogeneity by age has not been seen in the relative benefit of lipid-lowering therapy in trials that included older participants (53,60,61), and because older age confers higher risk, the absolute benefits are actually greater (53,65). Moderate-intensity statin therapy is recommended in patients with diabetes that are 75 years or older. However, the risk-benefit profile should be routinely evaluated in this population, with downward titration of dose performed as needed. See Section 11 “Older Adults” for more details on clinical considerations for this population.

Age <40 Years and/or Type 1 Diabetes. Very little clinical trial evidence exists for patients with type 2 diabetes under the age of 40 years or for patients with type 1 diabetes of any age. In the Heart Protection Study (lower age limit 40 years), the subgroup of ~600 patients with type 1 diabetes had a proportionately similar, although not statistically significant, reduction in risk as patients with type 2 diabetes (55). Even though the data are not definitive, similar statin treatment approaches should be considered for patients with type 1 or type 2 diabetes, particularly in the presence of other cardiovascular risk factors. Patients below the age of 40 have lower risk of developing a cardiovascular event over a 10-year horizon; however, their lifetime risk of developing cardiovascular disease and suffering an MI, stroke, or cardiovascular death is high. For patients under the age of 40 years and/or who have type 1 diabetes with other ASCVD risk factors, we recommend that the patient and health care provider discuss the relative benefits and risks and consider the use of moderate-intensity statin therapy.

Please refer to “Type 1 Diabetes Mellitus and Cardiovascular Disease: A Scientific Statement From the American Heart Association and American Diabetes Association” (69) for additional discussion.

Secondary Preventions (Patients With ASCVD)
High-intensity statin therapy is recommended for all patients with diabetes and ASCVD. This recommendation is based on the Cholesterol Treatment Trials’ Collaboration involving 26 statin trials, of which 5 compared high-intensity versus moderate-intensity statins. Together, they found reductions in nonfatal cardiovascular events with more intensive therapy, in patients with and without diabetes (53,57,64).

Over the past few years, there have been multiple large randomized trials investigating the benefits of adding nonstatin agents to statin therapy, including three that evaluated further lowering of LDL cholesterol with ezetimibe (65), PCSK9 inhibitors (66), and, cholesteryl ester transfer protein [CEPT] inhibitors, an investigational class of drugs with some recent supportive data (70). Each trial found a significant benefit in the reduction of ASCVD events that was directly related to the degree of further LDL cholesterol lowering. These three large trials comprised over 75,000 patients and 250,000 patient-years of follow-up, and approximately one-third of participants had diabetes. For patients with ASCVD who are on high-intensity (and maximally tolerated) statin therapy and have an LDL cholesterol ≥70 mg/dL, the addition of nonstatin LDL-lowering therapy is recommended after considering the potential for further ASCVD risk reduction, drug-specific adverse effects, and patient preferences.

Combination Therapy for LDL Cholesterol Lowering

Statins and Ezetimibe
The IMProved Reduction of Outcomes: Vytorin Efficacy International Trial (IMPROVE-IT) was a randomized controlled trial in 18,144 patients comparing the addition of ezetimibe to simvastatin therapy versus simvastatin alone. Individuals were ≥50 years of age, had experienced a recent acute coronary syndrome (ACS), and were treated for an average of 6 years. Overall, the addition of ezetimibe led to a 6.4% relative benefit and a 2% absolute reduction in major adverse cardiovascular events, with the degree of benefit being directly proportional to the change in LDL cholesterol, which was 70 mg/dL in the statin group on average and 54 mg/dL in the combination group (65). In those with diabetes (27% of participants), the combination of moderate-intensity simvastatin (40 mg) and ezetimibe (10 mg) showed a significant reduction of major adverse cardiovascular events with an absolute risk reduction of 5% (40% vs. 45%) and relative risk reduction of 14% (RR 0.86 [95% CI 0.78–0.94]) over moderate-intensity simvastatin (40 mg) alone (65).

Statins and PCSK9 Inhibitors
Placebo-controlled trials evaluating the addition of the PCSK9 inhibitors evolocumab and alirocarum to maximally tolerated doses of statin therapy in patients who were at high risk for ASCVD demonstrated an average reduction in LDL cholesterol ranging from 36 to 59%. These agents have been approved as adjunctive therapy for patients with ASCVD or familial hypercholesterolemia who are receiving maximally tolerated statin therapy but require additional lowering of LDL cholesterol (71,72).

The effects of PCSK9 inhibition on ASCVD outcomes was investigated in the Further Cardiovascular Outcomes Research With PCSK9 Inhibition in Subjects With Elevated Risk (FOURIER) trial, which enrolled 27,564 patients with prior ASCVD and an additional high-risk feature who were receiving their maximally tolerated statin therapy (two-thirds were on high-intensity statin) but who still had an LDL cholesterol ≥70 mg/dL or a non-HDL cholesterol ≥100 mg/dL (66). Patients were randomized to receive subcutaneous injections of evolocumab (either 140 mg every 2 weeks or 420 mg every month based on patient preference) versus placebo. Evolocumab reduced LDL cholesterol by 59% from a median of 92 to 30 mg/dL in the treatment arm.

During the median follow-up of 2.2 years, the composite outcome of cardiovascular death, MI, stroke, hospitalization for angina, or revascularization occurred in 11.3% vs. 9.8% of the placebo and evolocumab groups, respectively, representing a 15% relative risk reduction (P < 0.001). The combined end point of cardiovascular death, MI, or stroke was reduced by 20%, from 7.4 to 5.9% (P < 0.001). Importantly, similar benefits were seen in prespecified subgroup of patients with diabetes, comprising 11,031 patients (40% of the trial) (73).

Statins and CETP Inhibitors
Inhibition of CETP increases HDL cholesterol and further reduces LDL cholesterol.
This class of drugs is not likely to be available for clinical use, but studies provide further insight into the effects of LDL cholesterol lowering on cardiovascular events.

A total of four trials have been conducted, three of which failed to show benefit (74–76). Of these, one showed harm and two were stopped after approximately 2 years and thus did not have sufficient time or power to identify the benefit. The final study, the Randomized Evaluation of the Effects of Anacetrapib Through Lipid-modification (REVEAL) trial enrolled 30,449 patients with ASCVD (70). All patients received intensive atorvastatin therapy and were randomized to anacetrapib or placebo. During the median follow-up of 4.1 years, the primary outcome (coronary death, MI, or coronary revascularization) was significantly reduced with the addition of anacetrapib from 11.8 to 10.8%, with a hazard ratio (HR) of 0.91 ($P = 0.004$). The relative difference in risk was similar across multiple prespecified subgroups, including among 11,320 patients with diabetes (37% of the trial). The benefit appeared to be related to the reduction in LDL (and more broadly non-HDL) as opposed to the raising of HDL. The mean achieved LDL cholesterol was 63 mg/dL vs. 53 mg/dL at the trial midpoint in the placebo and anacetrapib groups, respectively. This study reaffirms the benefit of further lowering of LDL cholesterol on reducing cardiovascular events.

Other Combination Therapy

Recommendations
- Combination therapy (statin/fibrate) has not been shown to improve atherosclerotic cardiovascular disease outcomes and is generally not recommended. A
- Combination therapy (statin/niacin) has not been shown to provide additional cardiovascular benefit above statin therapy alone, may increase the risk of stroke with additional side effects, and is generally not recommended. A

Statin and Fibrate

Combination therapy (statin and fibrate) is associated with an increased risk for abnormal transaminase levels, myositis, and rhabdomyolysis. The risk of rhabdomyolysis is more common with higher doses of statins and renal insufficiency and appears to be higher when statins are combined with gemfibrozil (compared with fenofibrate) (80).

In the ACCORD study, in patients with type 2 diabetes who were at high risk for ASCVD, the combination of fenofibrate and simvastatin did not reduce the rate of fatal cardiovascular events, nonfatal MI, or nonfatal stroke as compared with simvastatin alone. Prespecified subgroup analyses suggested heterogeneity in treatment effects with possible benefit for men with both a triglyceride level ≥204 mg/dL (2.3 mmol/L) and an HDL cholesterol level ≤34 mg/dL (0.9 mmol/L) (81).

Statin and Niacin

The Atherothrombosis Intervention in Metabolic Syndrome With Low HDL/High Triglycerides: Impact on Global Health Outcomes (AIM-HIGH) trial randomized over 3,000 patients (about one-third with diabetes) with established ASCVD, low LDL cholesterol levels (<180 mg/dL [4.7 mmol/L]), low HDL cholesterol levels (men <40 mg/dL [1.0 mmol/L] and women <50 mg/dL [1.3 mmol/L]), and triglyceride levels of 150–400 mg/dL (1.7–4.5 mmol/L) to statin therapy plus extended-release niacin or placebo. The trial was halted early due to lack of efficacy on the primary ASCVD outcome (first event of the composite of death from CHD, nonfatal MI, ischemic stroke, hospitalization for an ACS, or symptom-driven coronary or cerebral revascularization) and a possible increase in ischemic stroke in those on combination therapy (82).

The much larger Heart Protection Study 2–Treatment of HDL to Reduce the Incidence of Vascular Events (HPS2-THRIVE) trial also failed to show a benefit of adding niacin to background statin therapy (83). A total of 25,673 patients with prior vascular disease were randomized to receive 2 g of extended-release niacin and 40 mg of laropiprant (an antagonist of the prostaglandin D2 receptor DP₃, that has been shown to improve adherence to niacin therapy) versus a matching placebo daily and followed for a median follow-up period of 3.9 years. There was no significant difference in the rate of coronary death, MI, stroke, or coronary revascularization with the addition of niacin–laropiprant versus placebo (13.2% vs. 13.7%; rate ratio, 0.96; $P = 0.29$). Niacin–laropiprant was associated with an increased incidence of new-onset diabetes (absolute excess, 1.3 percentage points; $P < 0.001$) and disturbances in diabetes control among those with diabetes. In addition, there was an increase in serious adverse events associated with the gastrointestinal system, musculoskeletal system, skin, and, unexpectedly, infection and bleeding.

Therefore, combination therapy with a statin and niacin is not recommended given the lack of efficacy on major ASCVD outcomes and side effects.

Diabetes With Statin Use

Several studies have reported a modestly increased risk of incident diabetes with statin use (84,85), which may be limited to those with diabetes risk factors. An analysis of one of the initial studies suggested that although statin use was associated with diabetes risk, the cardiovascular event rate reduction with statins far outweighed the risk of incident diabetes even for patients at highest risk for diabetes (86). The absolute risk increase was small (over 5 years of follow-up, 1.2% of participants on placebo developed diabetes and 1.5% on rosuvastatin developed diabetes) (86). A meta-analysis
of 13 randomized statin trials with 91,140 participants showed an odds ratio of 1.09 for a new diagnosis of diabetes, so that (on average) treatment of 255 patients with statins for 4 years resulted in one additional case of diabetes while simultaneously preventing 5.4 vascular events among those 255 patients (85).

Statins and Cognitive Function

A recent systematic review of the U.S. Food and Drug Administration’s (FDA’s) postmarketing surveillance databases, randomized controlled trials, and cohort, case-control, and cross-sectional studies evaluating cognition in patients receiving statins found that published data do not reveal an adverse effect of statins on cognition (87). In addition, no change in cognitive function has been reported in studies with the addition of ezetimibe (65) or PCSK9 inhibitors (66,88) to statin therapy, including among patients treated to very low LDL cholesterol levels. Therefore, a concern that statins or other lipid-lowering agents might cause cognitive dysfunction or dementia is not currently supported by evidence and should not deter their use in individuals with diabetes at high risk for ASCVD (87).

Antiplatelet Agents

Recommendations

- Use aspirin therapy (75–162 mg/day) as a secondary prevention strategy in those with diabetes and a history of atherosclerotic cardiovascular disease. **A**
- For patients with atherosclerotic cardiovascular disease and documented aspirin allergy, clopidogrel (75 mg/day) should be used. **B**
- Dual antiplatelet therapy (with low-dose aspirin and a P2Y12 inhibitor) is reasonable for a year after an acute coronary syndrome **A** and may have benefits beyond this period. **B**
- Aspirin therapy (75–162 mg/day) may be considered as a primary prevention strategy in those with type 1 or type 2 diabetes who are at increased cardiovascular risk. This includes men and women with diabetes aged ≥50 years who have at least one additional major risk factor (family history of premature atherosclerotic cardiovascular disease, hypertension, dyslipidemia, smoking, or albuminuria) and are not at increased risk of bleeding. **C**

Risk Reduction

Aspirin has been shown to be effective in reducing cardiovascular morbidity and mortality in high-risk patients with previous MI or stroke (secondary prevention). Its net benefit in primary prevention among patients with no previous cardiovascular events is more controversial both for patients with diabetes and for patients without diabetes (89,90). Previous randomized controlled trials of aspirin specifically in patients with diabetes failed to consistently show a significant reduction in overall ASCVD end points, raising questions about the efficacy of aspirin for primary prevention in people with diabetes, although some sex differences were suggested (91–93).

The Antithrombotic Triallists’ Collaboration published an individual patient–level meta-analysis (89) of the six large trials of aspirin for primary prevention in the general population. These trials collectively enrolled over 95,000 participants, including almost 4,000 with diabetes. Overall, they found that aspirin reduced the risk of serious vascular events by 12% (RR 0.88 [95% CI 0.82–0.94]). The largest reduction was for nonfatal MI, with little effect on CHD death (RR 0.95 [95% CI 0.78–1.15]) or total stroke. There was some evidence of a difference in aspirin effect by sex: aspirin significantly reduced ASCVD events in men but not in women. Conversely, aspirin had no effect on stroke in men but significantly reduced stroke in women. However, there was no heterogeneity of effect by sex in the risk of serious vascular events (P = 0.9).

Sex differences in the effects of aspirin have not been observed in studies of secondary prevention (89). In the six trials examined by the Antithrombotic Triallists’ Collaboration, the effects of aspirin on major vascular events were similar for patients with or without diabetes: RR 0.88 (95% CI 0.67–1.15) and RR 0.87 (95% CI 0.79–0.96), respectively. The CI was wider for those with diabetes because of smaller numbers.

Aspirin appears to have a modest effect on ischemic vascular events, with the absolute decrease in events depending on the underlying ASCVD risk. The main adverse effect is an increased risk of gastrointestinal bleeding. The excess risk may be as high as 5 per 1,000 per year in real-world settings. In adults with ASCVD risk >1% per year, the number of ASCVD events prevented will be similar to or greater than the number of episodes of bleeding induced, although these complications do not have equal effects on long-term health (94).

Treatment Considerations

In 2010, a position statement of the ADA, the American Heart Association, and the American College of Cardiology Foundation recommended that low-dose (75–162 mg/day) aspirin for primary prevention is reasonable for adults with diabetes and no previous history of vascular disease who are at increased ASCVD risk and who are not at increased risk for bleeding (95). This now out-of-date statement included sex-specific recommendations for use of aspirin therapy as primary prevention in persons with diabetes (95). However, since that time, multiple recent well-conducted studies and meta-analyses have reported a risk of heart disease and stroke that is equivalent if not higher in women compared with men with diabetes, including among nonelderly adults. Thus, current recommendations for using aspirin as primary prevention include both men and women aged ≥50 years with diabetes and at least one additional major risk factor (family history of premature ASCVD, hypertension, dyslipidemia, smoking, or chronic kidney disease/albuminuria) who are not at increased risk of bleeding (e.g., older age, anemia, renal disease) (96–99). While risk calculators such as those from the American College of Cardiology/American Heart Association (my.americanheart.org) may be a useful tool to estimate 10-year ASCVD risk, diabetes itself confers increased risk for ASCVD. As a result, such risk calculators have limited utility in helping to assess the potential benefits of aspirin therapy in individuals with diabetes. Noninvasive imaging techniques such as coronary computed tomography angiography may potentially help further tailor aspirin therapy, particularly in those at low risk (100), but are not generally recommended. Sex differences in the antiplatelet effect of aspirin have been suggested in the general population (101); however, further studies are needed to investigate the presence of such differences in individuals with diabetes.

Aspirin Use in People <50 Years of Age

Aspirin is not recommended for those at low risk of ASCVD (such as men and women aged <50 years with diabetes with no
other major ASCVD risk factors) as the low benefit is likely to be outweighed by the risks of bleeding. Clinical judgment should be used for those at intermediate risk (younger patients with one or more risk factors or older patients with no risk factors) until further research is available. Patients’ willingness to undergo long-term aspirin therapy should also be considered (102). Aspirin use in patients aged <21 years is generally contraindicated due to the associated risk of Reye syndrome.

Aspirin Dosing
Average daily dosages used in most clinical trials involving patients with diabetes ranged from 50 mg to 650 mg but were mostly in the range of 100–325 mg/day. There is little evidence to support any specific dose, but using the lowest possible dose may help to reduce side effects (103). In the U.S., the most common low-dose tablet is 81 mg. Although platelets from patients with diabetes have altered function, it is unclear what, if any, effect that finding has on the required dose of aspirin for cardioprotective effects in the patient with diabetes. Many alternate pathways for platelet activation exist that are independent of thromboxane A2 and thus not sensitive to the effects of aspirin (104). “Aspirin resistance” has been described in patients with diabetes when measured by a variety of ex vivo and in vitro methods (platelet aggregometry, measurement of thromboxane B2) (101), but other studies suggest no impairment in aspirin response among patients with diabetes (105). A recent trial suggested that more frequent dosing regimens of aspirin may reduce platelet reactivity in individuals with diabetes (106); however, these observations alone are insufficient to empirically recommend that higher doses of aspirin be used in this group at this time. It appears that 75–162 mg/day is optimal.

Indications for P2Y12 Use
A P2Y12 receptor antagonist in combination with aspirin should be used for at least 1 year in patients following an ACS and may have benefits beyond this period. Evidence supports use of either ticagrelor or clopidogrel if no percutaneous coronary intervention was performed and clopidogrel, ticagrelor, or prasugrel if a percutaneous coronary intervention was performed (107). In patients with diabetes and prior MI (1–3 years before), adding ticagrelor to aspirin significantly reduces the risk of recurrent ischemic events including cardiovascular and coronary heart disease death (108). More studies are needed to investigate the longer-term benefits of these therapies after ACS among patients with diabetes.

CORONARY HEART DISEASE

Recommendations

Screening
- In asymptomatic patients, routine screening for coronary artery disease is not recommended as it does not improve outcomes as long as atherosclerotic cardiovascular disease risk factors are treated. A
- Consider investigations for coronary artery disease in the presence of any of the following: atypical cardiac symptoms (e.g., unexplained dyspnea, chest discomfort); signs or symptoms of associated vascular disease including carotid bruits, transient ischemic attack, stroke, claudication, or peripheral arterial disease; or electrocardiogram abnormalities (e.g., Q waves). E

Treatment
- In patients with known atherosclerotic cardiovascular disease, consider ACE inhibitor or angiotensin receptor blocker therapy to reduce the risk of cardiovascular events. B
- In patients with prior myocardial infarction, β-blockers should be continued for at least 2 years after the event. B
- In patients with type 2 diabetes with stable congestive heart failure, metformin may be used if estimated glomerular filtration rate remains >30 mL/min but should be avoided in unstable or hospitalized patients with congestive heart failure. B
- In patients with type 2 diabetes and established atherosclerotic cardiovascular disease, antihyperglycemic therapy should begin with lifestyle management and metformin and subsequently incorporate an agent proven to reduce major adverse cardiovascular events and cardiovascular mortality (currently empagliflozin and liraglutide), after considering drug-specific and patient factors (see Table 8.1). A
- In patients with type 2 diabetes and established atherosclerotic cardiovascular disease, after lifestyle management and metformin, the antihyperglycemic agent canagliflozin may be considered to reduce major adverse cardiovascular events, based on drug-specific and patient factors (see Table 8.1). C

Cardiac Testing
Candidates for advanced or invasive cardiac testing include those with 1) typical or atypical cardiac symptoms and 2) an abnormal resting electrocardiogram (ECG). Exercise ECG testing without or with echocardiography may be used as the initial test. In adults with diabetes ≥40 years of age, measurement of coronary artery calcium is also reasonable for cardiovascular risk assessment. Pharmacologic stress echocardiography or nuclear imaging should be considered in individuals with diabetes in whom resting ECG abnormalities preclude exercise stress testing (e.g., left bundle branch block or ST-T abnormalities). In addition, individuals who require stress testing and are unable to exercise should undergo pharmacologic stress echocardiography or nuclear imaging.

Screening Asymptomatic Patients
The screening of asymptomatic patients with high ASCVD risk is not recommended (109), in part because these high-risk patients should already be receiving intensive medical therapy—an approach that provides similar benefit as invasive revascularization (110,111). There is also some evidence that silent MI may reverse over time, adding to the controversy concerning aggressive screening strategies (112). In prospective studies, coronary artery calcium has been established as an independent predictor of future ASCVD events in patients with diabetes and is consistently superior to both the UK Prospective Diabetes Study (UKPDS) risk engine and the Framingham Risk Score in predicting risk in this population (113–115). However, a randomized observational trial demonstrated no clinical benefit to routine screening of asymptomatic patients with type 2 diabetes and normal ECGs (116). Despite abnormal myocardial perfusion imaging in more than one in five patients, cardiac outcomes were essentially equal (and very low) in screened versus unscreened patients. Accordingly, indiscriminate screening is not considered cost-effective. Studies have found that a risk factor–
Table 9.4—CVOTs completed after issuance of the FDA 2008 guidance

<table>
<thead>
<tr>
<th>CVOTs completed after issuance of the FDA 2008 guidance</th>
<th>DPP-4 inhibitors</th>
<th>GLP-1 receptor agonists</th>
<th>SGLT2 inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SAVOR-TIMI 53</td>
<td>EXAMINE (140)</td>
<td>TECOS (132)</td>
</tr>
<tr>
<td></td>
<td>(n = 16,492)</td>
<td>(n = 5,380)</td>
<td>(n = 14,671)</td>
</tr>
<tr>
<td>Intervention</td>
<td>Saxagliptin/</td>
<td>Lixisenatide/</td>
<td>Canagliptin/</td>
</tr>
<tr>
<td></td>
<td>placebo</td>
<td>placebo</td>
<td>placebo</td>
</tr>
<tr>
<td>Main inclusion criteria</td>
<td>Type 2 diabetes</td>
<td>Type 2 diabetes</td>
<td>Type 2 diabetes</td>
</tr>
<tr>
<td></td>
<td>and history of</td>
<td>and ACS within 15–90</td>
<td>and without or</td>
</tr>
<tr>
<td></td>
<td>or multiple</td>
<td>days before randomization</td>
<td>existing CVD</td>
</tr>
<tr>
<td></td>
<td>risk factors for</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CVD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1C inclusion criteria (%)</td>
<td>≥6.5</td>
<td>6.5–11.0</td>
<td>6.5–8.0</td>
</tr>
<tr>
<td>Age (years)††</td>
<td>65.1</td>
<td>61.0</td>
<td>65.4</td>
</tr>
<tr>
<td>Diabetes duration (years)††</td>
<td>10.3</td>
<td>7.1</td>
<td>11.6</td>
</tr>
<tr>
<td>Median follow-up (years)</td>
<td>2.1</td>
<td>1.5</td>
<td>3.0</td>
</tr>
<tr>
<td>Statin use (%)</td>
<td>78</td>
<td>91</td>
<td>80</td>
</tr>
<tr>
<td>Metformin use (%)</td>
<td>70</td>
<td>66</td>
<td>82</td>
</tr>
<tr>
<td>Prior CVD/CHF (%)</td>
<td>78/13</td>
<td>100/28</td>
<td>74/18</td>
</tr>
<tr>
<td>Mean baseline A1C (%)</td>
<td>8.0</td>
<td>8.0</td>
<td>7.2</td>
</tr>
<tr>
<td>Mean difference in A1C between groups at end of treatment (%)</td>
<td>−0.3°</td>
<td>−0.3°</td>
<td>−0.3°</td>
</tr>
<tr>
<td>Year started/reported</td>
<td>2010/2013</td>
<td>2009/2013</td>
<td>2008/2015</td>
</tr>
<tr>
<td>Primary outcome§</td>
<td>3-point MACE</td>
<td>3-point MACE</td>
<td>4-point MACE</td>
</tr>
<tr>
<td></td>
<td>1.00 (0.89–1.12)</td>
<td>0.96 (0.85–1.08)</td>
<td>0.98 (0.89–1.13)</td>
</tr>
<tr>
<td>Key secondary outcome§</td>
<td>Expanded MACE</td>
<td>4-point MACE</td>
<td>3-point MACE</td>
</tr>
<tr>
<td></td>
<td>1.02 (0.94–1.11)</td>
<td>0.95 (0.89–1.10)</td>
<td>0.99 (0.89–1.10)</td>
</tr>
</tbody>
</table>

Continued on p. S98
Table 9.4—Continued

<table>
<thead>
<tr>
<th></th>
<th>DPP-4 inhibitors</th>
<th>GLP-1 receptor agonists</th>
<th>SGLT2 inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SAVOR-TIMI 53</td>
<td>EXAMINE</td>
<td>TECOS</td>
</tr>
<tr>
<td></td>
<td>(129)</td>
<td>(145)</td>
<td>(132)</td>
</tr>
<tr>
<td></td>
<td>(n = 16,492)</td>
<td>(n = 5,380)</td>
<td>(n = 14,671)</td>
</tr>
<tr>
<td>Cardiovascular death$§</td>
<td>1.03</td>
<td>0.85 (0.87–1.22)</td>
<td>1.03 (0.89–1.19)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.66–1.10)</td>
<td></td>
</tr>
<tr>
<td>MI$</td>
<td>0.95</td>
<td>1.08 (0.80–1.12)</td>
<td>0.95 (0.81–1.11)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.88–1.33)</td>
<td></td>
</tr>
<tr>
<td>Stroke$</td>
<td>1.11</td>
<td>0.91 (0.88–1.39)</td>
<td>0.97 (0.79–1.19)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.55–1.50)</td>
<td></td>
</tr>
<tr>
<td>HF hospitalization$§</td>
<td>1.27</td>
<td>1.19 (1.07–1.51)</td>
<td>1.20 (0.90–1.43)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.62–1.30)</td>
<td></td>
</tr>
<tr>
<td>Unstable angina</td>
<td>1.19</td>
<td>0.90 (0.89–1.60)</td>
<td>0.90 (0.60–1.37)</td>
</tr>
<tr>
<td>hospitalization§</td>
<td></td>
<td>(0.70–1.16)</td>
<td></td>
</tr>
<tr>
<td>All-cause mortality$§</td>
<td>1.11</td>
<td>0.88 (0.96–1.27)</td>
<td>1.01 (0.71–1.09)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.90–1.14)</td>
<td></td>
</tr>
<tr>
<td>Worsening nephropathy$§</td>
<td>1.08</td>
<td>0.88 (0.88–1.32)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.67–1.92)</td>
<td></td>
</tr>
</tbody>
</table>

n numbers are not assessed/reported; CANVAS-R, CANVAS-Renal; CHF, congestive heart failure; CVD, cardiovascular disease; eGFR, estimated glomerular filtration rate; MACE, major adverse cardiac event; UL, upper limit. Data from this table was adapted from Cefalu et al. (146) in the January 2018 issue of Diabetes Care. $*P$ powered to rule out an HR of 1.8; superiority hypothesis not prespecified. $**$ On the basis of prespecified outcomes, the renal outcomes are not viewed as statistically significant. $†$ Age was reported as means in all trials except EXAMINE, which reported medians; diabetes duration was reported as means in all but four trials, with SAVOR-TIMI 58, EXAMINE, and EXCEL reporting medians and EMPA-REG OUTCOME reporting as percentage of population with diabetes duration $>$ 10 years. $‡$ A1C change of 0.66% with 0.5 mg and 1.05% with 1 mg dose of semaglutide. $§$ A1C change of 0.30 in EMPA-REG OUTCOME is based on pooled results for both doses (i.e., 0.24% for 10 mg and 0.36% for 25 mg of empagliflozin). $‡‡$ Outcomes reported as HR (95% CI). $‖$ Worsening nephropathy is defined as the new onset of UACR $>$ 300 mg/g creatinine or a doubling of the serum creatinine level and an estimated glomerular filtration rate of $<$ 45 mL/min/1.73 m², the need for continuous renal-replacement therapy, or death from renal disease in EMPA-REG OUTCOME, LEADER, and SUSTAIN-6 and as doubling of creatinine level, initiation of dialysis, renal transplantation, or creatinine $>$ 6.0 mg/dL (530 μmol/L) in SAVOR-TIMI 53. Worsening nephropathy was a prespecified exploratory adjudicated outcome in SAVOR-TIMI 53, LEADER, and SUSTAIN-6 but not in EMPA-REG OUTCOME. $††$ Truncated data set (prespecified in treating hierarchy as the principal data set for analysis for superiority of all-cause mortality and cardiovascular death in the CANVAS Program). $‡‡‡$ Significant difference in A1C between groups ($P < 0.05$). $||$ Nontruncated data set. H Truncated integrated data set (refers to pooled data from CANVAS after 20 November 2012 plus CANVAS-R; prespecified in treating hierarchy as the principal data set for analysis for superiority of all-cause mortality and cardiovascular death in the CANVAS Program). $‡‡‡$ Nontruncated integrated data (refers to pooled data from CANVAS, including before 20 November 2012 plus CANVAS-R).
based approach to the initial diagnostic evaluation and subsequent follow-up for coronary artery disease fails to identify which patients with type 2 diabetes will have silent ischemia on screening tests (117,118). Any benefit of newer noninvasive coronary artery disease screening methods, such as computed tomography and computed tomography angiography, to identify patient subgroups for different treatment strategies remains unproven. Although asymptomatic patients with diabetes with higher coronary disease burden have more future cardiac events (113,119,120), the role of these tests beyond risk stratification is not clear. Their routine use leads to radiation exposure and may result in unnecessary invasive testing such as coronary angiography and revascularization procedures. The ultimate balance of benefit, cost, and risks of such an approach in asymptomatic patients remains controversial, particularly in the modern setting of aggressive ASCVD risk factor control.

Lifestyle and Pharmacologic Interventions

Intensive lifestyle intervention focusing on weight loss through decreased caloric intake and increased physical activity as performed in the Action for Health in Diabetes (Look AHEAD) trial may be considered for improving glucose control, fitness, and some ASCVD risk factors (121). Patients at increased ASCVD risk should receive aspirin and a statin and ACE inhibitor or ARB therapy if the patient has hypertension, unless there are contraindications to a particular drug class. While clear benefit exists for ACE inhibitor or ARB therapy in patients with diabetic kidney disease or hypertension, the benefits in patients with ASCVD in the absence of these conditions are less clear, especially when LDL cholesterol is concomitantly controlled (122,123). In patients with prior MI, active angina, or heart failure, β-blockers should be used (124).

Diabetes and Heart Failure

As many as 50% of patients with type 2 diabetes may develop heart failure (125). Data on the effects of glucose-lowering agents on heart failure outcomes have demonstrated that thiazolidinediones have a strong and consistent relationship with increased risk of heart failure (126–128). Therefore, thiazolidinedione use should be avoided in patients with symptomatic heart failure.

Recent studies have also examined the relationship between dipeptidyl peptidase 4 (DPP-4) inhibitors and heart failure and have had mixed results. The Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus—Thrombolysis in Myocardial Infarction 53 (SAVOR-TIMI 53) study showed that patients treated with saxagliptin (a DPP-4 inhibitor) were more likely to be hospitalized for heart failure than were those given placebo (3.5% vs. 2.8%, respectively) (129). Two other recent multicenter, randomized, double-blind, noninferiority trials, Examination of Cardiovascular Outcomes with Alogliptin versus Standard of Care (EXAMINE) and Trial Evaluating Cardiovascular Outcomes with Sitagliptin (TECOS), did not show associations between DPP-4 inhibitor use and heart failure. The FDA reported that the hospital admission rate for heart failure in EXAMINE was 3.9% for patients randomly assigned to alogliptin compared with 3.3% for those randomly assigned to placebo (130). Alogliptin had no effect on the composite end point of cardiovascular death and hospital admission for heart failure in the post hoc analysis (HR 1.00 [95% CI 0.82–1.21]) (131). TECOS showed no difference in the rate of heart failure hospitalization for the sitagliptin group (3.1%; 1.07 per 100 person-years) compared with the placebo group (3.1%; 1.09 per 100 person-years) (132).

A benefit on the incidence of heart failure has been observed with the use of some sodium–glucose cotransporter 2 (SGLT2) inhibitors. In the BI 10773 (Empagliflozin) Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients (EMPA-REG OUTCOME), the addition of empagliflozin to standard care led to a significant 35% reduction in the hospitalization for heart failure compared with placebo (133). Although the majority of patients in the study did not have heart failure at baseline, this benefit was consistent in patients with and without a prior history of heart failure (134). Similarly, in the Canagliflozin Cardiovascular Assessment Study (CANVAS), there was a 33% reduction in hospitalization for heart failure with canagliflozin versus placebo (135). Although heart failure hospitalizations were prospectively adjudicated in both trials, the type(s) of heart failure events prevented were not characterized. These preliminary findings, which strongly suggest heart failure–related benefits of SGLT2 inhibitors (particularly the prevention of heart failure), are being followed up with new outcomes trials in patients with established heart failure, both with and without diabetes, to determine their efficacy in treatment of heart failure.

Antihyperglycemic Therapies and Cardiovascular Outcomes

In 2008, the FDA issued a guidance for industry to perform cardiovascular outcomes trials for all new medications for the treatment for type 2 diabetes amid concerns of increased cardiovascular risk (137). Previously approved diabetes medications were not subject to the guidance. Recently published cardiovascular outcomes trials have provided additional data on cardiovascular outcomes in patients with type 2 diabetes with cardiovascular disease or at high risk for cardiovascular disease (see Table 9.4). Cardiovascular outcomes trials of DPP-4 inhibitors have all, so far, not shown cardiovascular benefits relative to placebo. However, results from other new agents have provided a mix of results.

EMPA-REG OUTCOME trial was a randomized, double-blind trial that assessed the effect of empagliflozin, a SGLT2 inhibitor, versus placebo on cardiovascular outcomes in 7,020 patients with type 2 diabetes and existing cardiovascular disease. Study participants had a mean age of 63 years, 57% had diabetes for more than 10 years, and 99% had established cardiovascular disease. EMPA-REG OUTCOME showed that over a median follow-up of 3.1 years, treatment reduced the composite outcome of MI, stroke, and cardiovascular death by 14% (absolute rate 10.5% vs. 12.1% in the placebo group, HR in the empagliflozin group 0.86; 95% CI 0.74–0.99; P = 0.04 for superiority) and cardiovascular death by 38% (absolute rate 3.7% vs. 5.9%, HR 0.62; 95% CI 0.49–0.77; P < 0.001) (133). The FDA recently added a new indication for empagliflozin, to reduce the risk of major adverse cardiovascular death in adults with type 2 diabetes and cardiovascular disease.

A second large cardiovascular outcomes trial program of an SGLT2 inhibitor, canagliflozin, has been reported (135). The CANVAS Program integrated data from two trials, including the CANVAS trial that started in 2009 before the approval of canagliflozin and the CANVAS-R trial that started in 2014 after the approval of canagliflozin. Combining both these trials, 10,142 participants with type 2 diabetes and
high cardiovascular risk were randomized to canagliflozin or placebo and were followed for an average 3.6 years. The mean age of patients was 63 years and 66% had a history of cardiovascular disease. The combined analysis of the two trials found that canagliflozin significantly reduced the composite outcome of cardiovascular death, MI, or stroke versus placebo (occurring in 26.9 vs. 31.5 participants per 1,000 patient-years; HR 0.86 [95% CI 0.75–0.97]; P < 0.001 for noninferiority; P = 0.02 for superiority). The specific estimates for canagliflozin versus placebo on the primary composite cardiovascular outcome were HR 0.88 (0.75–1.03) for the CANVAS trial, and 0.82 (0.66–1.01) for the CANVAS-R, with no heterogeneity found between trials. In the combined analysis, there was not a statistically significant difference in cardiovascular death (HR 0.87 [95% CI 0.72–1.06]). The initial CANVAS trial was partially unblinded prior to completion because of the need to file interim cardiovascular outcome data for regulatory approval of the drug (136). Of note, there was an increased risk of amputation with canagliflozin (6.3 vs. 3.4 participants per 1,000 patient-years; HR 1.97 [95% CI 1.41–2.75]) (135).

The Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results—A Long Term Evaluation (LEADER) trial was a randomized, double-blind trial that assessed the effect of liraglutide, a glucagon-like peptide 1 (GLP-1) receptor agonist, versus placebo on cardiovascular outcomes in 9,340 patients with type 2 diabetes at high risk for cardiovascular disease or with cardiovascular disease. Study participants with a mean age of 64 years and a mean duration of diabetes of nearly 13 years. Over 80% of study participants had established cardiovascular disease. After a median follow-up of 3.8 years, LEADER showed that the primary composite outcome (MI, stroke, or cardiovascular death) occurred in fewer participants in the treatment group (13.0%) compared with the placebo group (14.9%) (HR 0.87; 95% CI 0.78–0.97; P < 0.001 for noninferiority; P = 0.01 for superiority). Deaths from cardiovascular causes in the were significantly reduced in the liraglutide group (4.7%) compared to the placebo group (6.0%) (HR 0.78; 95% CI 0.66–0.93; P = 0.007) (138). The FDA recently approved use of liraglutide to reduce the risk of major adverse cardiovascular events, including heart attack, stroke and cardiovascular death, in adults with type 2 diabetes and established cardiovascular disease.

Results from a moderate-sized trial of another GLP-1 receptor agonist, semaglutide, were consistent with the LEADER trial (139). Semaglutide, a once-weekly GLP-1 receptor agonist, has not yet been approved by the FDA for the treatment of type 2 diabetes. The preapproval Trial to Evaluate Cardiovascular and Other Long-term Outcomes with Semaglutide in Subjects With Type 2 Diabetes (SUSTAIN-6) was the initial randomized trial powered to test noninferiority of semaglutide for the purpose of initial regulatory approval. In this study, 3,297 patients with type 2 diabetes were randomized to receive once-weekly semaglutide (0.5 mg or 1.0 mg) or placebo for 2 years. The primary outcome (the first occurrence of cardiovascular death, nonfatal MI, or nonfatal stroke) occurred in 108 patients (6.6%) in the semaglutide group vs. 146 patients (8.9%) in the placebo group (HR 0.74 [95% CI 0.58–0.95]; P < 0.001). More patients discontinued treatment in the semaglutide group because of adverse events, mainly gastrointestinal.

The Evaluation of Lixisenatide in Acute Coronary Syndrome (ELIXA) trial studied the once-daily GLP-1 receptor agonist lixisenatide on cardiovascular outcomes in patients with type 2 diabetes who had had a recent acute coronary event (140). A total of 6,068 patients with type 2 diabetes with a recent hospitalization for MI or unstable angina within the previous 180 days were randomized to receive lixisenatide or placebo in addition to standard care and were followed for a median of approximately 2.1 years. The primary outcome of cardiovascular death, MI, stroke, or hospitalization for unstable angina occurred in 406 patients (13.4%) in the lixisenatide group vs. 399 (13.2%) in the placebo group (HR 1.02 [95% CI 0.89–1.17]), which demonstrated the noninferiority of lixisenatide to placebo (P < 0.001) but did not show superiority (P = 0.81).

Most recently, the Exenatide Study of Cardiovascular Event Lowering (EXSCEL) trial also reported results with the once-weekly GLP-1 receptor agonist extended-release exenatide and found that major adverse cardiovascular events were numerically lower with use of extended-release exenatide compared with placebo, although this difference was not statistically significant (141). A total of 14,752 patients with type 2 diabetes (of whom 10,782 [73.1%] had previous cardiovascular disease) were randomized to receive extended-release exenatide 2 mg or placebo and followed for a median of 3.2 years. The primary end point of cardiovascular death, MI, or stroke occurred in 839 patients (11.4%; 3.7 events per 100 person-years) in the exenatide group and in 905 patients (12.2%; 4.0 events per 100 person-years) in the placebo group (HR 0.91 [95% CI 0.83–1.00]; P < 0.001 for noninferiority) but was not superior to placebo with respect to the primary end point (P = 0.06 for superiority). However, all-cause mortality was lower in the exenatide group (HR 0.86 [95% CI 0.77–0.97]. The incidence of acute pancreatitis, pancreatic cancer, medullary thyroid carcinoma, and serious adverse events did not differ significantly between the two groups.

In summary, there are now large randomized controlled trials reporting statistically significant reductions in cardiovascular events for two of the FDA-approved SGLT2 inhibitors (empagliflozin and canagliflozin) and one of the FDA-approved GLP-1 receptor agonists (liraglutide) where the majority, if not all, patients in the trial had ASCVD. The empagliflozin and liraglutide trials further demonstrated significant reductions in cardiovascular death. Once-weekly exenatide did not have statistically significant reductions in major adverse cardiovascular events or cardiovascular mortality but did have a significant reduction in all-cause mortality. In contrast, other GLP-1 receptor agonists have not shown similar reductions in cardiovascular events (Table 9.4). Whether the benefits of GLP-1 receptor agonists are a class effect remains to be definitively established. Additional large randomized trials of other agents in these classes are ongoing.

Of note, these studies examined the drugs in combination with metformin (Table 9.4) in the great majority of patients for whom metformin was not contraindicated or was tolerated. For patients with type 2 diabetes who have ASCVD, on lifestyle and metformin therapy, it is recommended to incorporate an agent with strong evidence for cardiovascular risk reduction, especially those with proven benefit on both major adverse cardiovascular events and cardiovascular death,
after consideration of drug-specific patient factors (Table 8.1). See Fig. 8.1 for additional recommendations on antihypoglycemic treatment in adults with type 2 diabetes.

References

44. Williams B, MacDonald TM, Morant S, et al.; British Hypertension Society’s PATHWAY Studies Group. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment
76. Ridker PM, Pradhan A, MacFadyen JG, Libby P, Glynn RJ. Cardiovascular benefits and diabetes

The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

DIABETIC KIDNEY DISEASE

Recommendations

Screening
- At least once a year, assess urinary albumin (e.g., spot urinary albumin–to–creatinine ratio) and estimated glomerular filtration rate in patients with type 1 diabetes with duration of ≥5 years, in all patients with type 2 diabetes, and in all patients with comorbid hypertension. **B**

Treatment
- Optimize glucose control to reduce the risk or slow the progression of diabetic kidney disease. **A**
- Optimize blood pressure control to reduce the risk or slow the progression of diabetic kidney disease. **A**
- For people with nondialysis-dependent diabetic kidney disease, dietary protein intake should be approximately 0.8 g/kg body weight per day (the recommended daily allowance). For patients on dialysis, higher levels of dietary protein intake should be considered. **B**
- In nonpregnant patients with diabetes and hypertension, either an ACE inhibitor or an angiotensin receptor blocker is recommended for those with modestly elevated urinary albumin–to–creatinine ratio (30–299 mg/g creatinine) **B** and is strongly recommended for those with urinary albumin–to–creatinine ratio ≥300 mg/g creatinine and/or estimated glomerular filtration rate <60 mL/min/1.73 m². **A**
- Periodically monitor serum creatinine and potassium levels for the development of increased creatinine or changes in potassium when ACE inhibitors, angiotensin receptor blockers, or diuretics are used. **B**
Continued monitoring of urinary albumin–to–creatinine ratio in patients with albuminuria treated with an ACE inhibitor or an angiotensin receptor blocker is reasonable to assess the response to treatment and progression of diabetic kidney disease.

An ACE inhibitor or an angiotensin receptor blocker is not recommended for the primary prevention of diabetic kidney disease in patients with diabetes who have normal blood pressure, normal urinary albumin–to–creatinine ratio (<30 mg/g creatinine), and normal estimated glomerular filtration rate.

When estimated glomerular filtration rate is <60 mL/min/1.73 m², evaluate and manage potential complications of chronic kidney disease.

Patients should be referred for evaluation for renal replacement treatment if they have an estimated glomerular filtration rate <30 mL/min/1.73 m².

Promptly refer to a physician experienced in the care of kidney disease for uncertainty about the etiology of kidney disease, difficult management issues, and rapidly progressing kidney disease.

Epidemiology of Diabetic Kidney Disease

Chronic kidney disease (CKD) is diagnosed by the persistent presence of elevated urinary albumin excretion (albuminuria), low estimated glomerular filtration rate (eGFR), or other manifestations of kidney damage (1,2). Diabetic kidney disease, or CKD attributed to diabetes, occurs in 20–40% of patients with diabetes (1,3–5). Diabetic kidney disease typically develops after diabetes duration of 10 years in type 1 diabetes, but may be present at diagnosis of type 2 diabetes. Diabetic kidney disease can progress to end-stage renal disease (ESRD) requiring dialysis or kidney transplantation and is the leading cause of ESRD in the United States (6). In addition, among people with type 1 or 2 diabetes, the presence of CKD markedly increases cardiovascular risk (7).

Assessment of Albuminuria and Estimated Glomerular Filtration Rate

Screening for albuminuria can be most easily performed by urinary albumin–to–creatinine ratio (UACR) in a random spot urine collection (1,2). Timed or 24-h collections are more burdensome and add little to prediction or accuracy. Measurement of a spot urine sample for albumin alone (whether by immunoassay or by using a sensitive dipstick test specific for albuminuria) without simultaneously measuring urine creatinine (Cr) is less expensive but susceptible to false-negative and false-positive determinations as a result of variation in urine concentration due to hydration.

Normal UACR is generally defined as <30 mg/g Cr, and increased urinary albumin excretion is defined as ≥30 mg/g Cr. However, UACR is a continuous measurement, and differences within the normal and abnormal ranges are associated with renal and cardiovascular outcomes (7–9). Furthermore, because of biological variability in urinary albumin excretion, two of three specimens of UACR collected within a 3- to 6-month period should be abnormal before considering a patient to have albuminuria. Exercise within 24 h, infection, fever, congestive heart failure, marked hyperglycemia, menstruation, and marked hypertension may elevate UACR independently of kidney damage.

eGFR should be calculated from serum Cr using a validated formula. The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation is generally preferred (2). eGFR is routinely reported by laboratories with serum Cr, and eGFR calculators are available from http://www.nkdep.nih.gov. An eGFR <60 mL/min/1.73 m² is generally considered abnormal, though optimal thresholds for clinical diagnosis are debated (10).

Urinary albumin excretion and eGFR each vary within people over time, and abnormal results should be confirmed to stage CKD (1,2).

Diagnosis of Diabetic Kidney Disease

Diabetic kidney disease is usually a clinical diagnosis made based on the presence of albuminuria and/or reduced eGFR in the absence of signs or symptoms of other primary causes of kidney damage. The typical presentation of diabetic kidney disease is considered to include a long-standing duration of diabetes, retinopathy, albuminuria without hematuria, and gradually progressive kidney disease. However, signs of CKD may be present at diagnosis or without retinopathy in type 2 diabetes, and reduced eGFR without albuminuria has been frequently reported in type 1 and type 2 diabetes and is becoming more common over time as the prevalence of diabetes increases in the U.S. (3,4,11,12).

An active urinary sediment (containing red or white blood cells or cellular casts), rapidly increasing albuminuria or nephrotic syndrome, rapidly decreasing eGFR, or the absence of retinopathy (in type 1 diabetes) may suggest alternative or additional causes of kidney disease. For patients with these features, referral to a nephrologist for further diagnosis, including the possibility of kidney biopsy, should be considered. It is rare for patients with type 1 diabetes to develop kidney disease without retinopathy. In type 2 diabetes, retinopathy is only moderately sensitive and specific for CKD caused by diabetes, as confirmed by kidney biopsy (13).

Stage 1–2 CKD has been defined by evidence of kidney damage (usually albuminuria) with eGFR ≥60 mL/min/1.73 m², while stages 3–5 CKD have been defined by progressively lower ranges of eGFR (14) (Table 10.1). More recently, Kidney Disease: Improving Global Outcomes (KDIGO) recommended a more comprehensive CKD staging that incorporates albuminuria and is more closely associated with risks of cardiovascular disease (CVD) and CKD progression (2). It has not been determined whether application of the more complex system aids clinical care or improves health outcomes.

Acute Kidney Injury

Acute kidney injury (AKI) is usually diagnosed by a rapid increase in serum Cr, which is also reflected as a rapid decrease in eGFR, over a relatively short period of time. People with diabetes are at higher risk of AKI than those without diabetes (15). Other risk factors for AKI include preexisting CKD, the use of medications that cause kidney injury (e.g., nonsteroidal anti-inflammatory drugs), and the use of medications that alter renal blood flow and intrarenal hemodynamics. In particular, many antihypertensive medications (e.g., diuretics, ACE inhibitors, and angiotensin receptor blockers [ARBs]) can reduce intravascular volume, renal blood flow, and/or glomerular filtration. There is a concern that sodium–glucose cotransporter 2 (SGLT2) inhibitors may promote AKI through volume depletion, particularly when combined with diuretics or other medications that reduce glomerular filtration. However, existing evidence from clinical trials and observational studies suggests that SGLT2 inhibitors do not
significantly increase AKI (16,17). Timely identification and treatment of AKI are important because AKI is associated with increased risks of progressive CKD and other poor health outcomes (18).

Surveillance
Albinurina and eGFR should be monitored regularly to enable timely diagnosis of diabetic kidney disease, monitor progression of diabetic kidney disease, detect superimposed kidney diseases including AKI, assess risk of CKD complications, dose drugs appropriately, and determine whether nephrology referral is needed. Among people with existing kidney disease, albuminuria and eGFR may change due to progression of diabetic kidney disease, development of a separate superimposed cause of kidney disease, AKI, or other effects of medications, as noted above. Serum potassium should also be monitored for patients treated with ACE inhibitors, ARBs, and diuretics because these medications can cause hyperkalemia or hypokalemia, which are associated with cardiovascular risk and mortality (19–21). For patients with eGFR <60 mL/min/1.73 m², appropriate medication dosing should be verified, exposure to nephrotoxins (e.g., nonsteroidal anti-inflammatory drugs and iodinated contrast) should be minimized, and potential CKD complications should be evaluated.

The need for annual quantitative assessment of albumin excretion after diagnosis of albuminuria, institution of ACE inhibitors or ARB therapy, and achieving blood pressure control is a subject of debate. Continued surveillance can assess both response to therapy and disease progression and may aid in assessing adherence to ACE inhibitor or ARB therapy. In addition, in clinical trials of ACE inhibitors or ARB therapy in type 2 diabetes, reducing albuminuria from levels ≥300 mg/g Cr has been associated with improved renal and cardiovascular outcomes, leading some to suggest that medications should be titrated to minimize UACR. However, this approach has not been formally evaluated in prospective trials. In type 1 diabetes, remission of albuminuria may occur spontaneously and cohort studies evaluating associations of change in albuminuria with clinical outcomes have reported inconsistent results (22,23).

The prevalence of CKD complications correlates with eGFR. When eGFR is <60 mL/min/1.73 m², screening for complications of CKD is indicated (Table 10.2). Early vaccination against hepatitis B virus is indicated in patients likely to progress to ESRD (see Section 3 “Comprehensive Medical Evaluation and Assessment of Comorbidities” for further information on immunization).

Interventions
Nutrition
For people with nondialysis-dependent diabetic kidney disease, dietary protein intake should be approximately 0.8 g/kg body weight per day (the recommended daily allowance) (1). Compared with higher levels of dietary protein intake, this level slowed GFR decline with evidence of a greater effect over time. Higher levels of dietary protein intake (≥20% of daily calories from protein or >1.3 g/kg/day) have been associated with increased albuminuria, more rapid kidney function loss, and CVD mortality and therefore should be avoided. Reducing the amount of dietary protein below the recommended daily allowance of 0.8 g/kg/day is not recommended because it does not alter glycemic measures, cardiovascular risk measures, or the course of GFR decline. In dialysis, protein-energy wasting is common, and increased dietary protein intake may be

Table 10.1—CKD stages and corresponding focus of kidney-related care

<table>
<thead>
<tr>
<th>CKD stage†</th>
<th>eGFR (mL/min/1.73 m²)</th>
<th>Evidence of kidney damage*</th>
<th>Diagnose cause of kidney injury</th>
<th>Evaluate and treat risk factors for CKD progression**</th>
<th>Evaluate and treat CKD complications***</th>
<th>Prepare for renal replacement therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>No clinical evidence of CKD</td>
<td>≥60</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1</td>
<td>≥90</td>
<td>+</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>60–89</td>
<td>+</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>30–59</td>
<td>+/−</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>15–29</td>
<td>+/−</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td><15</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

*CKD stages 1 and 2 are defined by evidence of kidney damage (+), while CKD stages 3–5 are defined by reduced eGFR with or without evidence of kidney damage (+/−). **Kidney damage is most often manifest as albuminuria (UACR ≥30 mg/g Cr) but can also include glomerular hematuria, other abnormalities of the urinary sediment, radiographic abnormalities, and other presentations. ***Risk factors for CKD progression include elevated blood pressure, glycemia, and albuminuria. **See Table 10.2

Table 10.2—Selected complications of CKD

<table>
<thead>
<tr>
<th>Complication</th>
<th>Medical and laboratory evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevated blood pressure</td>
<td>Blood pressure, weight</td>
</tr>
<tr>
<td>Volume overload</td>
<td>History, physical examination, weight</td>
</tr>
<tr>
<td>Electrolyte abnormalities</td>
<td>Serum electrolytes</td>
</tr>
<tr>
<td>Metabolic acidosis</td>
<td>Serum electrolytes</td>
</tr>
<tr>
<td>Anemia</td>
<td>Hemoglobin; iron testing if indicated</td>
</tr>
<tr>
<td>Metabolic bone disease</td>
<td>Serum calcium, phosphate, PTH, vitamin 25(OH)D</td>
</tr>
</tbody>
</table>

Complications of CKD generally become prevalent when eGFR falls below 60 mL/min/1.73 m² (stage 3 CKD or greater) and become more common and severe as CKD progresses. Evaluation of elevated blood pressure and volume overload should occur at every possible clinical contact; laboratory evaluations are generally indicated every 6–12 months for stage 3 CKD, every 3–5 months for stage 4 CKD, and every 1–3 months for stage 5 CKD, or as indicated to evaluate symptoms or changes in therapy, PTH, parathyroid hormone; 25(OH)D, 25-hydroxyvitamin D.
necessary to help preserve muscle mass and function.

For some patients with diabetes, restriction of dietary sodium may be useful to control blood pressure and reduce cardiovascular risk (24), and restriction of dietary potassium may be necessary to control serum potassium concentration (15,19–21). These interventions may be most important for patients with reduced eGFR, for whom urinary excretion of sodium and potassium may be impaired. Recommendations for dietary sodium and potassium intake should be individualized on the basis of comorbid conditions, medication use, blood pressure, and laboratory data.

Glycemia

Intensive glycemic control with the goal of achieving near-normoglycemia has been shown in large prospective randomized studies to delay the onset and progression of albuminuria and reduced eGFR in patients with type 1 diabetes (25,26) and type 2 diabetes (1,27–32). Insulin alone was used to lower blood glucose in the Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) study of type 1 diabetes, while a variety of agents were used in clinical trials of type 2 diabetes, supporting the conclusion that glycemic control itself helps prevent diabetic kidney disease and its progression. The effects of glucose-lowering therapies on diabetic kidney disease have helped define A1C targets (see Table 6.2).

The presence of diabetic kidney disease affects the risks and benefits of intensive glycemic control and a number of specific glucose-lowering medications. In the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial of type 2 diabetes, adverse effects of intensive glycemic control (hypoglycemia and mortality) were increased among patients with kidney disease at baseline (33,34). Moreover, there is a lag time of at least 2 years in type 2 diabetes to over 10 years in type 1 diabetes for the effects of intensive glucose control to manifest as improved eGFR outcomes (31,35,36). Therefore, in some patients with prevalent diabetic kidney disease and substantial comorbidity, target A1C levels may be less intensive (1,37).

Specific Glucose-Lowering Medications

Some glucose-lowering medications also have effects on the kidney that are direct, i.e., not mediated through glycemia. For example, SGLT2 inhibitors reduce renal tubular glucose reabsorption, weight, systemic blood pressure, intraglomerular pressure, and albuminuria and slow GFR loss through mechanisms that appear independent of glycemia (17,38–40). Glucagon-like peptide 1 receptor agonists and dipeptidyl peptidase 4 inhibitors also have direct effects on the kidney and have been reported to improve renal outcomes compared with placebo (41–44).

A number of large cardiovascular outcomes trials in patients with type 2 diabetes at high risk for cardiovascular disease or with existing cardiovascular disease (EMPA-REG OUTCOME [BI 10773 [Empagliflozin] Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients], CANVAS [Canagliflozin Cardiovascular Assessment Study], LEADER [Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results—A Long Term Evaluation], and SUSTAIN-6 [Trial to Evaluate Cardiovascular and Other Long-term Outcomes With Semaglutide in Subjects With Type 2 Diabetes]) examined kidney effects as secondary outcomes (40,41,44,45). Specifically, compared with placebo, empagliflozin reduced the risk of incident or worsening nephropathy (a composite of progression to UACR >300 mg/g Cr, doubling of serum Cr, ESRD, or death from ESRD) by 39% and the risk of doubling of serum Cr accompanied by eGFR <45 ml/min/1.73 m² by 44%; canagliflozin reduced the risk of progression of albuminuria by 27% and the risk of reduction in eGFR in eGFR, ESRD, or death from ESRD by 40%; liraglutide reduced the risk of new or worsening nephropathy (a composite of persistent UACR >300 mg/g Cr, doubling of serum Cr, ESRD, or death from ESRD) by 22%; and semaglutide reduced the risk of new or worsening nephropathy (a composite of persistent UACR >300 mg/g Cr, doubling of serum Cr, ESRD, or death from ESRD) by 36% (each P < 0.01). Additional trials with primary kidney outcomes are needed to definitively determine whether specific glucose-lowering drugs improve renal outcomes.

Patients with diabetic kidney disease are at high risk of cardiovascular events, and some SGLT2 inhibitors and glucagon-like peptide 1 receptor agonists have demonstrated cardiovascular benefits. Namely, in EMPA-REG OUTCOME, CANVAS, and LEADER, empagliflozin, canagliflozin, and liraglutide, respectively, each reduced cardiovascular events, evaluated as primary outcomes, compared with placebo (see Section 9 “Cardiovascular Disease and Risk Management” for further discussion). All of these trials included large numbers of people with kidney disease (for example, the baseline prevalence of albuminuria in EMPA-REG OUTCOME was 53%), and some of the cardiovascular outcomes trials (CANVAS and LEADER) were enriched with patients with kidney disease through eligibility criteria based on albuminuria or reduced eGFR. The glucose-lowering effects of SGLT2 inhibitors are blunted with eGFR (17,45). However, the cardiovascular benefits of empagliflozin, canagliflozin, and liraglutide were similar among participants with and without kidney disease at baseline (40,41,45,46).

With reduced eGFR, drug dosing may require modification (1). The U.S. Food and Drug Administration (FDA) revised guidance for the use metformin in diabetic kidney disease in 2016 (47), recommending use of eGFR instead of serum Cr to guide treatment and expanding the pool of patients with kidney disease for whom metformin treatment should be considered. Revised FDA guidance states that metformin is contraindicated in patients with an eGFR <30 ml/min/1.73 m², eGFR should be monitored while taking metformin, the benefits and risks of continuing treatment should be reassessed when eGFR falls <45 ml/min/1.73 m², metformin should not be initiated for patients with an eGFR <45 ml/min/1.73 m², and metformin should be temporarily discontinued at the time of or before iodinated contrast imaging procedures in patients with eGFR 30–60 ml/min/1.73 m². Other glucose-lowering medications also require dose adjustment or discontinuation at low eGFR (see Table 8.2) (1).

Cardiovascular Disease and Blood Pressure

Hypertension is a strong risk factor for the development and progression of diabetic kidney disease (48). Antihypertensive therapy reduces the risk of albuminuria (49–52), and among patients with type 1 or 2 diabetes with established diabetic kidney disease (eGFR <60 ml/min/1.73 m² and UACR ≥300 mg/g Cr), ACE inhibitor or ARB therapy reduces the risk of progression to ESRD (53–55). Moreover, antihypertensive therapy reduces risks of cardiovascular events (49).

Blood pressure levels <140/90 mmHg are generally recommended to reduce CVD mortality and slow CKD progression among people with diabetes (52). Lower blood pressure targets (e.g., <130/80
mmHg) may be considered for patients based on individual anticipated benefits and risks. Patients with diabetic kidney disease are at increased risk of CKD progression (particularly those with albuminuria) and CVD and therefore may be suitable in some cases for lower blood pressure targets.

ACE inhibitors or ARBs are the preferred first-line agent for blood pressure treatment among patients with diabetes, hypertension, eGFR < 60 mL/min/1.73 m², and UACR ≥ 300 mg/g Cr because of their proven benefits for prevention of CKD progression (53–56). In general, ACE inhibitors and ARBs are considered to have similar benefits (57,58) and risks. In the setting of lower levels of albuminuria (30–299 mg/g Cr), ACE inhibitor or ARB therapy has been demonstrated to reduce progression to more advanced albuminuria (≥ 300 mg/g Cr) and cardiovascular events but not progression to ESRD (56,59). While ACE inhibitors or ARBs are often prescribed for albuminuria without hypertension, clinical trials have not been performed in this setting to determine whether this improves renal outcomes.

Absent kidney disease, ACE inhibitors or ARBs are useful to control blood pressure but may not be superior to alternative proven classes of antihypertensive therapy, including thiazide-like diuretics and dihydropyridine calcium channel blockers (60). In a trial of people with type 2 diabetes and normal urine albumin excretion, an ARB reduced or suppressed the development of albuminuria but increased the rate of cardiovascular events (61). In a trial of people with type 1 diabetes exhibiting neither albuminuria nor hypertension, ACE inhibitors or ARBs did not prevent the development of diabetic glomerulopathy assessed by kidney biopsy (62). Therefore, ACE inhibitors or ARBs are not recommended for patients without hypertension to prevent the development of diabetic kidney disease.

Two clinical trials studied the combinations of ACE inhibitors and ARBs and found no benefits on CVD or diabetic kidney disease, and the drug combination had higher adverse event rates (hyperkalemia and/or AKI) (63,64). Therefore, the combined use of ACE inhibitors and ARBs should be avoided.

Mineralocorticoid receptor antagonists (spironolactone, eplerenone, and finerenone) in combination with ACE inhibitors or ARBs remain an area of great interest. Mineralocorticoid receptor antagonists are effective for management of resistant hypertension, have been shown to reduce albuminuria in short-term studies of diabetic kidney disease, and may have additional cardiovascular benefits (65–67). There has been, however, an increase in hyperkalemic episodes in those on dual therapy, and larger, longer trials with clinical outcomes are needed before recommending such therapy.

Referral to a Nephrologist
Consider referral to a physician experienced in the care of kidney disease when there is uncertainty about the etiology of kidney disease, difficult management issues (anemia, secondary hyperparathyroidism, metabolic bone disease, resistant hypertension, or electrolyte disturbances), or advanced kidney disease (eGFR < 30 mL/min/1.73 m²) requiring discussion of renal replacement therapy for ESRD. The threshold for referral may vary depending on the frequency with which a provider encounters patients with diabetes and kidney disease. Consultation with a nephrologist when stage 4 CKD develops (eGFR ≤ 30 mL/min/1.73 m²) has been found to reduce cost, improve quality of care, and delay dialysis (68). However, other specialists and providers should also educate their patients about the progressive nature of diabetic kidney disease, the kidney preservation benefits of proactive treatment of blood pressure and blood glucose, and the potential need for renal replacement therapy.

DIABETIC RETINOPATHY

Recommendations
- Optimize glycemic control to reduce the risk or slow the progression of diabetic retinopathy.
- Optimize blood pressure and serum lipid control to reduce the risk or slow the progression of diabetic retinopathy.

Screening
- Adults with type 1 diabetes should have an initial dilated and comprehensive eye examination by an ophthalmologist or optometrist within 5 years after the onset of diabetes.
- Patients with type 2 diabetes should have an initial dilated and comprehensive eye examination by an ophthalmologist or optometrist at the time of the diabetes diagnosis.

If there is no evidence of retinopathy for one or more annual eye exam and glycemia is well controlled, then exams every 1–2 years may be considered. If any level of diabetic retinopathy is present, subsequent dilated retinal examinations should be repeated at least annually by an ophthalmologist or optometrist. If retinopathy is progressing or sight-threatening, then examinations will be required more frequently.

While retinal photography may serve as a screening tool for retinopathy, it is not a substitute for a comprehensive eye exam.

Women with preexisting type 1 or type 2 diabetes who are planning pregnancy or who are pregnant should be counseled on the risk of development and/or progression of diabetic retinopathy.

Eye examinations should occur before pregnancy or in the first trimester in patients with preexisting type 1 or type 2 diabetes, and then patients should be monitored every trimester and for 1 year postpartum as indicated by the degree of retinopathy.

Treatment
- Promptly refer patients with any level of macular edema, severe nonproliferative diabetic retinopathy (a precursor of proliferative diabetic retinopathy), or any proliferative diabetic retinopathy to an ophthalmologist who is knowledgeable and experienced in the management of diabetic retinopathy.
- The traditional standard treatment, panretinal laser photocoagulation therapy, is indicated to reduce the risk of vision loss in patients with high-risk proliferative diabetic retinopathy and, in some cases, severe nonproliferative diabetic retinopathy.
- Intravitreous injections of anti-vascular endothelial growth factor ranibizumab are not inferior to traditional panretinal laser photocoagulation and are also indicated to reduce the risk of vision loss in patients with proliferative diabetic retinopathy.
- Intravitreous injections of anti-vascular endothelial growth factor are indicated for central-involved diabetic macular edema, which occurs...
Diabetic retinopathy is a highly specific vascular complication of both type 1 and type 2 diabetes, with prevalence strongly related to both the duration of diabetes and the level of glycemic control (69). Diabetic retinopathy is the most frequent cause of new cases of blindness among adults aged 20–74 years in developed countries. Glaucoma, cataracts, and other disorders of the eye occur earlier and more frequently in people with diabetes. In addition to diabetes duration, factors that increase the risk of, or are associated with, retinopathy include chronic hyperglycemia (70), diabetic kidney disease (71), hypertension (72), and dyslipidemia (73).

Intensive diabetes management with the goal of achieving near-normoglycemia has been shown in large prospective randomized studies to prevent and/or delay the onset and progression of diabetic retinopathy and potentially improve patient-reported visual function (28,74–76).

Lowering blood pressure has been shown to decrease retinopathy progression, although tight targets (systolic blood pressure <120 mmHg) do not impart additional benefit (75). ACE inhibitors and ARBs are both effective treatments in diabetic retinopathy (77). In patients with dyslipidemia, retinopathy progression may be slowed by the addition of fenofibrate, particularly with very mild non-proliferative diabetic retinopathy (NPDR) at baseline (73). Several case series and a controlled prospective study suggest that pregnancy in patients with type 1 diabetes may aggravate retinopathy and threaten vision, especially when glycemic control is poor at the time of conception (78,79). Laser photoocoagulation surgery can minimize the risk of vision loss (79).

Screening

The preventive effects of therapy and the fact that patients with proliferative diabetic retinopathy (PDR) or macular edema may be asymptomatic provide strong support for screening to detect diabetic retinopathy.

An ophthalmologist or optometrist who is knowledgeable and experienced in diagnosing diabetic retinopathy should perform the examinations. Youth with type 1 or type 2 diabetes are also at risk for complications and need to be screened for diabetic retinopathy (80). If diabetic retinopathy is present, prompt referral to an ophthalmologist is recommended. Subsequent examinations for patients with type 1 or type 2 diabetes are generally repeated annually for patients with minimal to no retinopathy. Exams every 1–2 years may be cost-effective after one or more normal eye exams, and in a population with well-controlled type 2 diabetes, there was essentially no risk of development of significant retinopathy with a 3-year interval after a normal examination (81). Less frequent intervals have been found in simulated modeling to be potentially effective in screening for diabetic retinopathy in patients without diabetic retinopathy (82). More frequent examinations by the ophthalmologist will be required if retinopathy is progressing.

Retinal photography with remote reading by experts has great potential to provide screening services in areas where qualified eye care professionals are not readily available (83,84). High-quality fundus photographs can detect most clinically significant diabetic retinopathy. Interpretation of the images should be performed by a trained eye care provider. Retinal photography may also enhance efficiency and reduce costs when the expertise of ophthalmologists can be used for more complex examinations and for therapy (85). In-person exams are still necessary when the retinal photos are of unacceptable quality and for follow-up if abnormalities are detected. Retinal photos are not a substitute for comprehensive eye exams, which should be performed at least initially and at intervals thereafter as recommended by an eye care professional. Results of eye examinations should be documented and transmitted to the referring health care professional.

Type 1 Diabetes

Because retinopathy is estimated to take at least 5 years to develop after the onset of hyperglycemia, patients with type 1 diabetes should have an initial dilated and comprehensive eye examination within 5 years after the diagnosis of diabetes (86).

Type 2 Diabetes

Patients with type 2 diabetes who may have had years of undiagnosed diabetes and have a significant risk of prevalent diabetic retinopathy at the time of diagnosis should have an initial dilated and comprehensive eye examination at the time of diagnosis.

Pregnancy

Pregnancy is associated with a rapid progression of diabetic retinopathy (87,88). Women with preexisting type 1 or type 2 diabetes who are planning pregnancy or who have become pregnant should be counseled on the risk of development and/or progression of diabetic retinopathy. In addition, rapid implementation of intensive glycemic management in the setting of retinopathy is associated with early worsening of retinopathy (79). Women who develop gestational diabetes mellitus do not require eye examinations during pregnancy and do not appear to be at increased risk of developing diabetic retinopathy during pregnancy (89).

Treatment

Two of the main motivations for screening for diabetic retinopathy are to prevent loss of vision and to intervene with treatment when vision loss can be prevented or reversed.

Photoocoagulation Surgery

Two large trials, the Diabetic Retinopathy Study (DRS) in patients with PDR and the Early Treatment Diabetic Retinopathy Study (ETDRS) in patients with macular edema, provide the strongest support for the therapeutic benefits of photoocoagulation surgery. The DRS (90) showed in 1978 that panretinal photoocoagulation surgery reduced the risk of severe vision loss from PDR from 15.9% in untreated eyes to 6.4% in treated eyes with the greatest benefit ratio in those with more advanced baseline disease (disc neovascularization or vitreous hemorrhage). In 1985, the ETDRS also verified the benefits of panretinal photoocoagulation for high-risk PDR and in older-onset patients with severe NPDR or less-than-high-risk PDR. Panretinal laser photoocoagulation is still commonly used to manage complications of diabetic retinopathy that involve retinal neovascularization and its complications.

Anti–Vascular Endothelial Growth Factor Treatment

Recent data from the Diabetic Retinopathy Clinical Research Network and others demonstrate that intravitreal injections of anti–vascular endothelial growth factor (anti-VEGF) agent, specifically ranibizumab, resulted in visual acuity outcomes that were not inferior to those observed...
in patients treated with panretinal laser at 2 years of follow-up (91). In addition, it was observed that patients treated with ranibizumab tended to have less peripheral visual field loss, fewer vitrectomy surgeries for secondary complications from their proliferative disease, and a lower risk of developing diabetic macular edema. However, a potential drawback in using anti-VEGF therapy to manage proliferative disease is that patients were required to have a greater number of visits and received a greater number of treatments than is typically required for management with panretinal laser, which may not be optimal for some patients. Other emerging therapies for retinopathy that may use sustained intravitreal delivery of pharmacologic agents are currently under investigation. In April, the FDA approved ranibizumab for the treatment of diabetic retinopathy.

While the ETDRS (92) established the benefit of focal laser photocoagulation surgery in eyes with clinically significant macular edema (defined as retinal edema located at or within 500 μm of the center of the macula), current data from well-designed clinical trials demonstrate that intravitreal anti-VEGF agents provide a more effective treatment regimen for central-involved diabetic macular edema than monotherapy or even combination therapy with laser (93–95). There are currently three anti-VEGF agents commonly used to treat eyes with central-involved diabetic macular edema—bevacizumab, ranibizumab, and aflibercept (69).

In both DRS and ETDRS, laser photocoagulation surgery was beneficial in reducing the risk of further visual loss in affected patients, but generally not beneficial in reversing already diminished acuity. Anti-VEGF therapy improves vision and has replaced the need for laser photocoagulation in the vast majority of patients with diabetic macular edema (96). Most patients require near-monthly administration of intravitreal therapy with anti-VEGF agents during the first 12 months of treatment, with fewer injections needed in subsequent years to maintain remission from central-involved diabetic macular edema.

NEUROPATHY

Recommendations

Screening

- All patients should be assessed for diabetic peripheral neuropathy starting at diagnosis of type 2 diabetes and 5 years after the diagnosis of type 1 diabetes and at least annually thereafter. B

 - Assessment for distal symmetric polyneuropathy should include a careful history and assessment of either temperature or pinprick sensation (small-fiber function) and vibration sensation using a 128-Hz tuning fork (for large-fiber function). All patients should have annual 10-g monofilament testing to identify feet at risk for ulceration and amputation. B

- Symptoms and signs of autonomic neuropathy should be assessed in patients with microvascular complications. E

Treatment

- Optimize glucose control to prevent or delay the development of neuropathy in patients with type 1 diabetes A and to slow the progression of neuropathy in patients with type 2 diabetes. B

- Assess and treat patients to reduce pain related to diabetic peripheral neuropathy B and symptoms of autonomic neuropathy and to improve quality of life. E

- Either pregabalin or duloxetine are recommended as initial pharmacologic treatments for neuropathic pain in diabetes. A

The diabetic neuropathies are a heterogeneous group of disorders with diverse clinical manifestations. The early recognition and appropriate management of neuropathy in the patient with diabetes is important.

1. Diabetic neuropathy is a diagnosis of exclusion. Nondiabetic neuropathies may be present in patients with diabetes and may be treatable.

3. Up to 50% of diabetic peripheral neuropathy (DPN) may be asymptomatic. If not recognized and if preventive foot care is not implemented, patients are at risk for injuries to their insensitive feet.

4. Recognition and treatment of autonomic neuropathy may improve symptoms, reduce sequelae, and improve quality of life.

Specific treatment for the underlying nerve damage, other than improved glycemic control, is currently not available. Glycemic control can effectively prevent DPN and cardiac autonomic neuropathy (CAN) in type 1 diabetes (97,98) and may modestly slow their progression in type 2 diabetes (30), but does not reverse neuronal loss. Therapeutic strategies (pharmacologic and nonpharmacologic) for the relief of painful DPN and symptoms of autonomic neuropathy can potentially reduce pain (99) and improve quality of life.

Diagnosis

Diabetic Peripheral Neuropathy

Patients with type 1 diabetes for 5 or more years and all patients with type 2 diabetes should be assessed annually for DPN using the medical history and simple clinical tests. Symptoms vary according to the class of sensory fibers involved. The most common early symptoms are induced by the involvement of small fibers and include pain and dysesthesias (unpleasant sensations of burning and tingling). The involvement of large fibers may cause numbness and loss of protective sensation (LOPS). LOPS indicates the presence of distal sensorimotor polyneuropathy and is a risk factor for diabetic foot ulceration. The following clinical tests may be used to assess small- and large-fiber function and protective sensation:

1. Small-fiber function: pinprick and temperature sensation
2. Large-fiber function: vibration perception and 10-g monofilament
3. Protective sensation: 10-g monofilament

These tests not only screen for the presence of dysfunction but also predict future risk of complications. Electrophysiological testing or referral to a neurologist is rarely needed, except in situations where the clinical features are atypical or the diagnosis is unclear.

In all patients with diabetes and DPN, causes of neuropathy other than diabetes should be considered, including toxins (alcohol), neurotoxic medications (chemotherapy), vitamin B12 deficiency, hypothyroidism, renal disease, malignancies (multiple myeloma, bronchogenic carcinoma), infections (HIV), chronic inflammatory demyelinating neuropathy, inherited neuropathies, and vasculitis (100). See American Diabetes Association position statement “Diabetic Neuropathy” for more details (99).
Diabetic Autonomic Neuropathy

The symptoms and signs of autonomic neuropathy should be elicited carefully during the history and physical examination. Major clinical manifestations of diabetic autonomic neuropathy include hypoglycemia unawareness, resting tachycardia, orthostatic hypotension, gastroparesis, constipation, diarrhea, fecal incontinence, erectile dysfunction, neurogenic bladder, and sudomotor dysfunction with either increased or decreased sweating.

Cardiac Autonomic Neuropathy. CAN is associated with mortality independently of other cardiovascular risk factors (101,102). In its early stages, CAN may be completely asymptomatic and detected only by decreased heart rate variability with deep breathing. Advanced disease may be associated with resting tachycardia (>100 bpm) and orthostatic hypotension (a fall in systolic or diastolic blood pressure by >20 mmHg or >10 mmHg, respectively, upon standing without an appropriate increase in heart rate). CAN treatment is generally focused on alleviating symptoms.

Gastrointestinal Neuropathies. Gastrointestinal neuropa-thies may involve any portion of the gastrointestinal tract with manifestations including esophageal dysmotility, gastroparesis, constipation, diarrhea, and fecal incontinence. Gastroparesis should be suspected in individuals with erratic glyemic control or with upper gastrointestinal symptoms without another identified cause. Exclusion of organic causes of gastric outlet obstruction or peptic ulcer disease (with esophageal-gastro-duodenoscopy or a barium study of the stomach) is needed before considering a diagnosis of or specialized testing for gastroparesis. The diagnostic gold standard for gastroparesis is the measurement of gastric emptying with scintigraphy of digestible solids at 15-min intervals for 4 h after food intake. The use of 13C octanoic acid breath test is emerging as a viable alternative.

Genitourinary Disturbances. Diabetic autonomic neuropathy may also cause genitourinary disturbances, including sexual dysfunction and bladder dysfunction. In men, diabetic autonomic neuropathy may cause erectile dysfunction and/or retrograde ejaculation (99). Female sexual dysfunction occurs more frequently in those with diabetes and presents as decreased sexual desire, increased pain during intercourse, decreased sexual arousal, and inadequate lubrication (103). Lower urinary tract symptoms manifest as urinary incontinence and bladder dysfunction (nocturia, frequent urination, urination urgency, and weak urinary stream). Evaluation of bladder function should be performed for individuals with diabetes who have recurrent urinary tract infections, pyelonephritis, incontinence, or a palpable bladder.

Treatment

Glycemic Control

Near-normal glycemic control, implemented early in the course of diabetes, has been shown to effectively delay or prevent the development of DPN and CAN in patients with type 1 diabetes (104–107). Although the evidence for the benefit of near-normal glycemic control is not as strong for type 2 diabetes, some studies have demonstrated a modest slowing of progression without reversal of neuronal loss (30,108). Specific glucose-lowering strategies may have different effects. In a post hoc analysis, participants, particularly men, in the Bypass Angioplasty Revascularization Investigation in Type 2 Diabetes (BARI 2D) trial treated with insulin sensitizers had a lower incidence of distal symmetric polyneuropathy over 4 years than those treated with insulin/sulfonylurea (109).

Neuropathic Pain

Neuropathic pain can be severe and can impact quality of life, limit mobility, and contribute to depression and social dysfunction (110). No compelling evidence exists in support of glycemic control or lifestyle management as therapies for neuropathic pain in diabetes or prediabetes, which leaves only pharmaceutical interventions (111).

Pregabalin and duloxetine have received regulatory approval by the FDA, Health Canada, and the European Medicines Agency for the treatment of neuropathic pain in diabetes. The opioid tapentadol has regulatory approval in the U.S. and Canada, but the evidence of its use is weaker (112). Comparative effectiveness studies and trials that include quality-of-life outcomes are rare, so treatment decisions must consider each patient’s presentation and comorbidities and often follow a trial-and-error approach. Given the range of partially effective treatment options, a tailored and stepwise pharmacologic strategy with careful attention to relative symptom improvement, medication adherence, and medication side effects is recommended to achieve pain reduction and improve quality of life (113–115).

Pregabalin, a calcium channel α2-δ subunit ligand, is the most extensively studied drug for DPN. The majority of studies testing pregabalin have reported favorable effects on the proportion of participants with at least 30–50% improvement in pain (112,114,116–119). However, not all trials with pregabalin have been positive (112,114,120,121), especially when treating patients with advanced refractory DPN (118). Adverse effects may be more severe in older patients (122) and may be attenuated by lower starting doses and more gradual titration.

Duloxetine is a selective norepinephrine and serotonin reuptake inhibitor. Doses of 60 and 120 mg/day showed efficacy in the treatment of pain associated with DPN in multicenter randomized trials, although some of these had high drop-out rates (112,114,119,121). Duloxetine also appeared to improve neuropathy-related quality of life (123). In longer-term studies, a small increase in A1C was reported in people with diabetes treated with duloxetine compared with placebo (124). Adverse events may be more severe in older people, but may be attenuated with lower doses and slower titrations of duloxetine.

Tapentadol is a centrally acting opioid analgesic that exerts its analgesic effects through both µ-opioid receptor agonism and noradrenaline reuptake inhibition. Extended-release tapentadol was approved by the FDA for the treatment of neuropathic pain associated with diabetes based on data from two multicenter clinical trials in which participants treated to an optimal dose of tapentadol were randomly assigned to continue that dose or switch to placebo (125,126). However, both used a design enriched for patients who responded to tapentadol and therefore their results are not generalizable. A recent systematic review and meta-analysis by the Special Interest Group on Neuropathic Pain of the International Association for the Study of Pain found the evidence supporting the effectiveness of tapentadol in reducing neuropathic pain to be inconclusive (112). Therefore, given the high risk for addiction and safety concerns compared with the relatively modest pain reduction, the use of extended-release tapentadol is...
In addition to treatment of hypogonadism if present, treatments for erectile dysfunction may include phosphodiesterase type 5 inhibitors, intracorporeal or intraurethral prostaglandins, vacuum devices, or penile prostheses. As with DPN treatments, these interventions do not change the underlying pathology and natural history of the disease process but may improve the patient’s quality of life.

FOOT CARE

Recommendations

- Perform a comprehensive foot evaluation at least annually to identify risk factors for ulcers and amputations. **B**
- All patients with diabetes should have their feet inspected at every visit. **C**
- Obtain a prior history of ulceration, amputation, Charcot foot, angioplasty or vascular surgery, cigarette smoking, retinopathy, and renal disease and assess current symptoms of neuropathy (pain, burning, numbness) and vascular disease (leg fatigue, claudication). **B**
- The examination should include inspection of the skin, assessment of foot deformities, neurological assessment (10-g monofilament testing with at least one other assessment: pinprick, temperature, vibration), and vascular assessment including pulses in the legs and feet. **B**
- Patients with symptoms of claudication or decreased or absent pedal pulses should be referred for ankle-brachial index and for further vascular assessment as appropriate. **C**
- A multidisciplinary approach is recommended for individuals with foot ulcers and high-risk feet (e.g., dialysis patients and those with Charcot foot, prior ulcers, or amputation). **B**
- Refer patients who smoke or who have histories of prior lower-extremity complications, loss of protective sensation, structural abnormalities, or peripheral arterial disease to foot care specialists for ongoing preventive care and life-long surveillance. **C**
- Provide general preventive foot self-care education to all patients with diabetes. **B**
- The use of specialized therapeutic footwear is recommended for high-risk patients with diabetes including those with severe neuropathy, foot deformities, or history of amputation. **B**

Foot ulcers and amputation, which are consequences of diabetic neuropathy and/or peripheral arterial disease (PAD), are common and represent major causes of morbidity and mortality in people with diabetes. Early recognition and treatment of patients with diabetes and feet at risk for ulcers and amputations can delay or prevent adverse outcomes.

The risk of ulcers or amputations is increased in people who have the following risk factors:

- Poor glycemic control
- Peripheral neuropathy with LOPS
- Cigarette smoking
- Foot deformities
- Preulcerative callus or corn
- PAD
- History of foot ulcer
- Amputation
- Visual impairment
- Diabetic kidney disease (especially patients on dialysis)

Clinicians are encouraged to review American Diabetes Association screening recommendations for further details and practical descriptions of how to perform components of the comprehensive foot examination (129).

Evaluation for Loss of Protective Sensation

All adults with diabetes should undergo a comprehensive foot evaluation at least annually. Detailed foot assessments may occur more frequently in patients with histories of ulcers or amputations, foot deformities, insensate feet, and PAD (130). Foot inspections should occur at every visit in all patients with diabetes. To assess risk, clinicians should ask about history of foot ulcers or amputation, neuropathic and peripheral vascular symptoms, impaired vision, renal disease, tobacco use, and foot care practices. A general inspection of skin integrity and musculoskeletal deformities should be performed. Vascular assessment should include inspection and palpation of pedal pulses.

The neurological exam performed as part of the foot examination is designed to identify LOPS rather than early neuropathy. The 10-g monofilament is the most useful test to diagnose LOPS. Ideally, the 10-g monofilament test should be performed with at least one other assessment (pinprick, temperature or vibration...
sensation using a 128-Hz tuning fork, or ankle reflexes). Absent monofilament sensation suggests LOPS, while at least two normal tests (and no abnormal test) rules out LOPS.

Evaluation for Peripheral Arterial Disease

Initial screening for PAD should include a history of decreased walking speed, leg fatigue, claudication, and an assessment of the pedal pulses. Ankle-brachial index testing should be performed in patients with symptoms or signs of PAD.

Patient Education

All patients with diabetes and particularly those with high-risk foot conditions (history of ulcer or amputation, deformity, LOPS, or PAD) and their families should be provided general education about risk factors and appropriate management (131). Patients at risk should understand the implications of foot deformities, LOPS, and PAD; the proper care of the foot, including nail and skin care; and the importance of foot monitoring on a daily basis. Patients with LOPS should be educated on ways to substitute other sensory modalities (palpation or visual inspection using an unbreakable mirror) for surveillance of early foot problems.

The selection of appropriate footwear and footwear behaviors at home should also be discussed. Patients’ understanding of these issues and their physical ability to conduct proper foot surveillance and care should be assessed. Patients with visual difficulties, physical constraints preventing movement, or cognitive problems that impair their ability to assess the condition of the foot and to institute appropriate responses will need other people, such as family members, to assist with their care.

Treatment

People with neuropathy or evidence of increased plantar pressures (e.g., erythema, warmth, or calluses) may be adequately managed with well-fitted walking shoes or athletic shoes that cushion the feet and redistribute pressure. People with bony deformities (e.g., hammertoes, prominent metatarsal heads, bunions) may need extra wide or deep shoes. People with bony deformities, including Charcot foot, who cannot be accommodated with commercial therapeutic footwear, will require custom-molded shoes. Special consideration and a thorough workup should be performed when patients with neuropathy present with the acute onset of a red, hot, swollen foot or ankle, and Charcot neuroarthropathy should be excluded. Early diagnosis and treatment of Charcot neuroarthropathy is the best way to prevent deformities that increase the risk of ulceration and amputation. The routine prescription of therapeutic footwear is not generally recommended. However, patients should be provided adequate information to aid in selection of appropriate footwear. General footwear recommendations include a broad and square toe box, laces with three or four eyes per side, padded tongue, quality lightweight materials, and sufficient size to accommodate a cushioned insole. Use of custom therapeutic footwear can help reduce the risk of future foot ulcers in high-risk patients (130,132).

Most diabetic foot infections are polymicrobial, with aerobic gram-positive cocci, staphylococci and streptococci are the most common causative organisms. Wounds without evidence of soft tissue or bone infection do not require antibiotic therapy. Empiric antibiotic therapy can be narrowly targeted at gram-positive cocci in many patients with acute infections, but those at risk for infection with antibiotic-resistant organisms or with chronic, previously treated, or severe infections require broader-spectrum regimens and should be referred to specialized care centers (133). Foot ulcers and wound care may require care by a podiatrist, orthopedic or vascular surgeon, or rehabilitation specialist experienced in the management of individuals with diabetes (133).

Hyperbaric oxygen therapy (HBOT) in patients with diabetic foot ulcers has mixed evidence supporting its use as an adjunctive treatment to enhance wound healing and prevent amputation (134–136). In a relatively high-quality double-blind study of patients with chronic diabetic foot ulcers, hyperbaric oxygen as an adjunctive therapy resulted in significantly more complete healing of the index ulcer in patients treated with HBOT compared with placebo at 1 year of follow-up (137). However, multiple subsequently published studies have either failed to demonstrate a benefit of HBOT or have been relatively small with potential flaws in study design (135). A well-conducted randomized controlled study performed in 103 patients found that HBOT did not reduce the indication for amputation or facilitate wound healing compared to comprehensive wound care in patients with chronic diabetic foot ulcers (138). A systematic review by the International Working Group on the Diabetic Foot of interventions to improve the healing of chronic diabetic foot ulcers concluded that analysis of the evidence continues to present methodological challenges as randomized controlled studies remain few with a majority being of poor quality (135). HBOT also does not seem to have a significant effect on health-related quality of life in patients with diabetic foot ulcers (139,140). A recent review concluded that the evidence to date remains inconclusive regarding the clinical and cost-effectiveness of HBOT as an adjunctive treatment to standard wound care for diabetic foot ulcers (141). Results from the recently published Dutch DAMOCLES (Does Applying More Oxygen Cure Lower Extremity Sores?) trial demonstrated that HBOT in patients with diabetes and ischemic wounds did not significantly improve complete wound healing and limb salvage (142). The Centers for Medicare & Medicaid Services currently covers HBOT for diabetic foot ulcers that have failed a standard course of wound therapy when there are no measurable signs of healing for at least 30 consecutive days (143). HBOT should be a topic of shared decision-making before treatment is considered for selected patients with diabetic foot ulcers (143).

References

Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet 2012;380:1662–1673

68. Smart NA, Dieberg G, Ladhani M, Titus T. Early referral to specialist nephrology services for preventing the progression to end-stage kidney disease. Cochrane Database Syst Rev 2014;6:CD007335
deferred laser or triamcinolone plus prompt laser
for diabetic macular edema. Ophthalmology
2011;118:609–614
for diabetic macular edema: results from 2 phase III
randomized trials: RISE and RIDE. Ophthalmology
2012;119:789–801
97. Ang L, Jaiswal M, Martin C, Pop-Busui R. Glu-
cose control and diabetic neuropathy: lessons from recent large clinical trials. Curr Diab Rep
2014;14:528
98. Martin CL, Albers JW, Pop-Busui R; DCTT/
EDIC Research Group. Neuropathy and related
findings in the Diabetes Control and Complica-
tions Trial/Epidemiology of Diabetes Interven-
tions and Complications study. Diabetes Care
2014;37:31–38
Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care
2017;40:1326–54
100. Freeman R. Not all neuropathy in diabetes is
Action to Control Cardiovascular Risk in Diabetes
Study Group. Effects of cardiac autonomic dys-
function on mortality risk in the Action to Control
Cardiovascular Risk in Diabetes (ACCORD) trial. Diabetes Care 2010;33:1578–1584
102. Pop-Busui R, Cleary PA, Braffett BH, et al.;
DCTT/EDIC Research Group. Association between
cardiovascular autonomic neuropathy and left
ventricular dysfunction: DCTT/EDIC study (Diabe-
tes Control and Complications Trial/Epidemiology
of Diabetes Interventions and Complications).
J Am Coll Cardiol 2013;61:447–454
103. Smith AG, Lessard M, Reyna S, Doudova M,
Singleton JR. The diagnostic utility of Sudoscan for
ican Academy of Neurology; American Association
of Neuromuscular and Electrodiagnostic Medi-
cine; American Academy of Physical Medicine
and Rehabilitation. Evidence-based guideline:
treatment of painful diabetic neuropathy: report
of the American Academy of Neurology, the American Association of Neuromuscular and Elec-
trodiagnostic Medicine, and the American Academ-
Y of Physical Medicine and Rehabilitation [published correction in Neurology 2011;77:
603]. Neurology 2011;76:1758–1765
105. Griebeler ML, Morey-Vargas OL, Brito JP,
et al. Pharmacologic interventions for painful di-
abetic neuropathy: an umbrella systematic review
and comparative effectiveness network meta-
106. Freeman R, Durso-Decruz E, Emer B. Efficacy,
safety, and tolerability of pregabalin treatment for
painful diabetic peripheral neuropathy. J Diabe-
tes Complications 2015;29:146–156
107. Freeman R, Durso-Decruz E, Emer B. Efficacy,
safety, and tolerability of pregabalin treatment for
painful diabetic peripheral neuropathy: findings from seven randomized, controlled trials across a
range of doses. Diabetes Care 2008;31:1448–1454
108. Moore RA, Straube S, Wiffen PJ, Derry S,
McQuay HJ. Pregabalin for acute and chronic pain
3:CD007076
in patients with inadequately treated painful di-
abetic peripheral neuropathy: a randomized with-
effectiveness, safety and tolerability of pregabalin
for painful diabetic neuropathy. Pain Med 2014;15:
157–165
111. Ziegler D, Fonseca V. From guideline to pa-
tient: a review of recent recommendations for
pharmacotherapy of painful diabetic neuropathy.
J Diabetes Complications 2015;29:146–156
112. Dworkin RH, Jensen MP, Gammaltoni AR,
Olah A, Gelfand HS. Symptom profiles differ in
A randomized controlled trial of duloxetine in di-
abetic peripheral neuropathic pain. Neurology
2006;67:1411–1420
114. Hardy T, Sachson R, Shen S, Armbruster M,
Boulton AJM. Does treatment with duloxetine for
neuropathic pain impact glycemic control? Diabe-
tes Care 2007;30:21–26
Safety and efficacy of tapentadol ER in patients
with painful diabetic peripheral neuropathy: re-
sults of a randomized-withdrawal, placebo-
controlled trial. Curr Med Res Opin 2011;27:
151–162
randomized withdrawal, placebo-controlled study
evaluating the efficacy and tolerability of tapen-
dol ER extended release in patients with chronic
painful diabetic peripheral neuropathy. Diabetes
Care 2014;37:2302–2309
117. Camilleri M, Parkman HP, Shafl MA, Abell TL,
Gerson L, American College of Gastroenterology.
Clinical guideline: management of gastroparesis.
Am J Gastroenterol 2013;108:18–37; quiz 38
118. Umpierrez GE. Ed. Therapy for Diabetes Mel-
itus and Related Disorders. 6th ed. Alexandria,
VA: American Diabetes Association, 2014
119. Boulton AJM, Armstrong DG, Albert SF,
et al.; American Diabetes Association; American
Association of Clinical Endocrinologists. Compre-
hensive foot examination and risk assessment: a
report of the task force of the foot care interest
group of the American Diabetes Association, with
endorsement by the American Association of Clin-
ic Endocrinologists. Diabetes Care 2008;31:
1679–1685
The management of diabetic foot: a clinical prac-
tice guideline by the Society for Vascular Surgery
in collaboration with the American Podiatric Med-
ical Association and the Society for Vascular Medi-
121. Bonner T, Foster M, Spears-Lanoix E. Type 2
diabetes-related foot care knowledge and foot
self-care practice interventions in the United
States: a systematic review of the literature. Dia-
bet Foot Ankle 2016;7:29758
122. Rizzo L, Tedeschi A, Fallani E, et al. Custom-
made orthoses and shoes in a structured follow-up
program reduces the incidence of neuropathic
ulcers in high-risk diabetic foot patients. Int J
Low Extrem Wounds 2012;11:59–64
123. Lipsky BA, Berendt AR, Cornia PB, et al.; In-
fected Diseases Society of America. 2012 Infectious
Diseases Society of America clinical practice
guideline for the diagnosis and treatment of di-
abetic foot infections. Clin Infect Dis 2012;54:
e132–e173
tematic review and meta-analysis of adjunctive
63(2 Suppl):465–585.e1–2
125. Game FL, Apelqvist J, Attinger C, et al.; In-
ternational Working Group on the Diabetic Foot.
Effectiveness of interventions to enhance healing of
chronic ulcers of the foot in diabetes: a systematic
154–168

11. Older Adults: Standards of Medical Care in Diabetes—2018

The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

Recommendations

- Consider the assessment of medical, psychological, functional, and social geriatric domains in older adults to provide a framework to determine targets and therapeutic approaches for diabetes management. C
- Screening for geriatric syndromes may be appropriate in older adults experiencing limitations in their basic and instrumental activities of daily living as they may affect diabetes self-management and be related to health-related quality of life. C

Diabetes is an important health condition for the aging population; approximately one-quarter of people over the age of 65 years have diabetes and one-half of older adults have prediabetes (1), and this proportion is expected to increase rapidly in the coming decades. Older individuals with diabetes have higher rates of premature death, functional disability, accelerated muscle loss, and coexisting illnesses, such as hypertension, coronary heart disease, and stroke, than those without diabetes. Older adults with diabetes also are at greater risk than other older adults for several common geriatric syndromes, such as polypharmacy, cognitive impairment, urinary incontinence, injurious falls, and persistent pain. These conditions may impact older adults’ diabetes self-management abilities (2).

Screening for diabetes complications in older adults should be individualized and periodically revisited, as the results of screening tests may impact therapeutic approaches and targets (2–4). Older adults are at increased risk for depression and should therefore be screened and treated accordingly (5). Diabetes management may require assessment of medical, psychological, functional, and social domains. This may provide a framework to determine targets and therapeutic approaches. Particular attention should be paid to complications that can develop over short periods of time and/or that would significantly impair functional status, such as visual and lower-extremity complications. Please refer to the American Diabetes Association (ADA) consensus report “Diabetes in Older Adults” for details (2).
NEUROCOGNITIVE FUNCTION

Recommendation
- Screening for early detection of mild cognitive impairment or dementia and depression is indicated for adults 65 years of age or older at the initial visit and annually as appropriate. B

Older adults with diabetes are at higher risk of cognitive decline and institutionalization (6,7). The presentation of cognitive impairment ranges from subtle executive dysfunction to memory loss and overt dementia. People with diabetes have higher incidences of all-cause dementia, Alzheimer disease, and vascular dementia than people with normal glucose tolerance (8). The effects of hyperglycemia and hyperinsulinemia on the brain are areas of intense research. Clinical trials of specific interventions—including cholinesterase inhibitors and glutamatergic antagonists—have not shown positive therapeutic benefit in maintaining or significantly improving cognitive function or in preventing cognitive decline (9). Pilot studies in patients with mild cognitive impairment evaluating the potential benefits of intranasal insulin therapy and metformin therapy provide insights for future clinical trials and mechanistic studies (10–12).

The presence of cognitive impairment can make it challenging for clinicians to help their patients to reach individualized glycemic, blood pressure, and lipid targets. Cognitive dysfunction makes it difficult for patients to perform complex self-care tasks, such as glucose monitoring and adjusting insulin doses. It also hinders their ability to appropriately maintain the timing and content of diet. When clinicians are managing patients with cognitive dysfunction, it is critical to simplify drug regimens and to involve caregivers in all aspects of care.

Poor glycemic control is associated with a decline in cognitive function (13), and longer duration of diabetes is associated with worsening cognitive function. There are ongoing studies evaluating whether preventing or delaying diabetes onset may help to maintain cognitive function in older adults. However, studies examining the effects of intensive glycemic and blood pressure control to achieve specific targets have not demonstrated a reduction in brain function decline (14).

Older adults with diabetes should be carefully screened and monitored for cognitive impairment (2). Several organizations have released simple assessment tools, such as the Mini-Mental State Examination (15) and the Montreal Cognitive Assessment (16), which may help to identify patients requiring neuropsychological evaluation, particularly those in whom dementia is suspected (i.e., experiencing memory loss and decline in their basic and instrumental activities of daily living). Annual screening for cognitive impairment is indicated for adults 65 years of age or older for early detection of mild cognitive impairment or dementia (4). People who screen positive for cognitive impairment should receive diagnostic assessment as appropriate, including referral to a behavioral health provider for formal cognitive/neuropsychological evaluation (17).

HYPOGLYCEMIA

Recommendation
- Hypoglycemia should be avoided in older adults with diabetes. It should be assessed and managed by adjusting glycemic targets and pharmacologic interventions. B

It is important to prevent hypoglycemia to reduce the risk of cognitive decline (18) and other major adverse outcomes. Intensive glucose control in the Action to Control Cardiovascular Risk in Diabetes-Memory in Diabetes study (ACCORD MIND) was not found to have benefits on brain structure or cognitive function during follow-up (14). Of note, in the Diabetes Control and Complications Trial (DCCT), no significant long-term declines in cognitive function were observed though participants had relatively high rates of recurrent severe hypoglycemia (19). It is also important to carefully assess and reassess patients’ risk for worsening of glycemic control and functional decline. Older adults are at higher risk of hypoglycemia for many reasons, including insulin deficiency necessitating insulin therapy and progressive renal insufficiency. In addition, older adults tend to have higher rates of unidentified cognitive deficits, causing difficulty in complex self-care activities (e.g., glucose monitoring, adjusting insulin doses, etc.). These cognitive deficits have been associated with increased risk of hypoglycemia, and, conversely, severe hypoglycemia has been linked to increased risk of dementia. Therefore, it is important to routinely screen older adults for cognitive dysfunction and discuss findings with the patients and their caregivers. Hypoglycemic events should be diligently monitored and avoided, whereas glycemic targets and pharmacologic interventions may need to be adjusted to accommodate for the changing needs of the older adult (2).

TREATMENT GOALS

Recommendations
- Older adults who are otherwise healthy with few coexisting chronic illnesses and intact cognitive function and functional status should have lower glycemic goals (A1C <7.5% [58 mmol/mol]), while those with multiple coexisting chronic illnesses, cognitive impairment, or functional dependence should have less stringent glycemic goals (A1C <8.0–8.5% [64–69 mmol/mol]). C
- Glycemic goals for some older adults might reasonably be relaxed as part of individualized care, but hyperglycemia leading to symptoms or risk of acute hyperglycemic complications should be avoided in all patients. C
- Screening for diabetes complications should be individualized in older adults. Particular attention should be paid to complications that would lead to functional impairment. C
- Treatment of hypertension to individualized target levels is indicated in most older adults. C
- Treatment of other cardiovascular risk factors should be individualized in older adults considering the time frame of benefit. Lipid-lowering therapy and aspirin therapy may benefit those with life expectations at least equal to the time frame of primary prevention or secondary intervention trials. E

Rationale
The care of older adults with diabetes is complicated by their clinical, cognitive, and functional heterogeneity. Some older individuals may have developed diabetes years earlier and have significant complications, others are newly diagnosed and may have had years of undiagnosed
providers caring for older adults with diabetes must take this heterogeneity into account when regimen changes are made. For example, some older adults with diabetes are physically fit and have good cognitive function, while others may have limited mobility or cognitive impairment. These differences mean that treatment goals and strategies may need to be adjusted accordingly. For example, some older adults may benefit from more frequent glucose monitoring, while others may be able to manage their diabetes with less frequent testing.

In conclusion, the management of diabetes in older adults is complex and requires a personalized approach. Providers should consider multiple factors, including the patient’s health status, physical functioning, cognitive function, and preferences, when developing treatment goals for glycemia, blood pressure, and dyslipidemia. By taking a comprehensive approach to diabetes management, providers can help older adults live long enough to reap the benefits of in-2

Table 11.1 Framework for considering treatment goals for glycemia, blood pressure, and dyslipidemia in older adults with diabetes

<table>
<thead>
<tr>
<th>Status</th>
<th>Diabetic Self-Monitoring of Plasma Blood Glucose</th>
<th>Blood Pressure</th>
<th>Lipids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy Older Adults</td>
<td>≥150 mg/dL</td>
<td>≤130 mg/dL</td>
<td><100 mg/dL</td>
</tr>
<tr>
<td>Healthy Older Adults with Good Functional Status</td>
<td>≥150 mg/dL</td>
<td>≤130 mg/dL</td>
<td><100 mg/dL</td>
</tr>
<tr>
<td>Healthy Older Adults with Limited Functional Status</td>
<td>≥150 mg/dL</td>
<td>≤130 mg/dL</td>
<td><100 mg/dL</td>
</tr>
<tr>
<td>Limited Remaining Life Expectancy, High Vulnerability, or Estimated Life Expectancy of 5–10 Years</td>
<td>≥150 mg/dL</td>
<td>≤130 mg/dL</td>
<td><100 mg/dL</td>
</tr>
<tr>
<td>Intermediate Remaining Life Expectancy, High Vulnerability, or Estimated Life Expectancy of 1–5 Years</td>
<td>≥150 mg/dL</td>
<td>≤130 mg/dL</td>
<td><100 mg/dL</td>
</tr>
<tr>
<td>Limited Remaining Life Expectancy, Low Vulnerability, or Estimated Life Expectancy of ≤1 Year</td>
<td>≥150 mg/dL</td>
<td>≤130 mg/dL</td>
<td><100 mg/dL</td>
</tr>
<tr>
<td>Very Complex Poor Health</td>
<td>≥150 mg/dL</td>
<td>≤130 mg/dL</td>
<td><100 mg/dL</td>
</tr>
</tbody>
</table>

Table 11.1 Framework for considering treatment goals for glycemia, blood pressure, and dyslipidemia in older adults with diabetes.
made or an individual’s functional abilities diminish. In addition, declining or impaired ability to perform diabetes self-care behaviors may be an indication for referral of older adults with diabetes for cognitive and physical functional assessment using age-normalized evaluation tools (3,17).

Patients With Complications and Reduced Functionality
For patients with advanced diabetes complications, life-limiting comorbid illnesses, or substantial cognitive or functional impairments, it is reasonable to set less intensive glycemic goals (Table 11.1). Factors to consider in individualizing glycemic goals are outlined in Fig. 6.1. These patients are less likely to benefit from reducing the risk of microvascular complications and more likely to suffer serious adverse effects from hypoglycemia. However, patients with poorly controlled diabetes may be subject to acute complications of diabetes, including dehydration, poor wound healing, and hyperglycemic hyperosmolar coma. Glycemic goals at a minimum should avoid these consequences.

Vulnerable Patients at the End of Life
For patients receiving palliative care and end-of-life care, the focus should be to avoid symptoms and complications from glycemic management. Thus, when organ failure develops, several agents will have to be titrated or discontinued. For the dying patient, most agents for type 2 diabetes may be removed (25). There is, however, no consensus for the management of type 1 diabetes in this scenario (26). See p. S123, END-OF-LIFE CARE, for additional information.

Beyond Glycemic Control
Although hyperglycemia control may be important in older individuals with diabetes, greater reductions in morbidity and mortality are likely to result from control of other cardiovascular risk factors rather than from tight glycemic control alone. There is strong evidence from clinical trials of the value of treating hypertension in older adults (27,28). There is less evidence for lipid-lowering therapy and aspirin therapy, although the benefits of these interventions for primary prevention and secondary intervention are likely to apply to older adults whose life expectancies equal or exceed the time frames of the clinical trials.

PHARMACOLOGIC THERAPY

Recommendations
- In older adults at increased risk of hypoglycemia, medication classes with low risk of hypoglycemia are preferred. B
- Overtreatment of diabetes is common in older adults and should be avoided. B
- Deintensification (or simplification) of complex regimens is recommended to reduce the risk of hypoglycemia, if it can be achieved within the individualized A1C target. B

Special care is required in prescribing and monitoring pharmacologic therapies in older adults (29). See Fig. 8.1 for general recommendations regarding antihyperglycemic treatment for adults with type 2 diabetes and Table 8.1 for patient and drug-specific factors to consider when selecting antihyperglycemic agents. Cost may be an important consideration, especially as older adults tend to be on many medications. It is important to match complexity of the treatment regimen to the self-management ability of an older patient. Many older adults with diabetes struggle to maintain the frequent blood glucose testing and insulin injection regimens they previously followed, perhaps for many decades, as they develop medical conditions that may impair their ability to follow their regimen safely. Individualized glycemic goals should be established (Fig. 6.1) and periodically adjusted based on coexisting chronic illnesses, cognitive function, and functional status (2). Tighter glycemic control in older adults with multiple medical conditions is associated with an increased risk of hypoglycemia and considered overtreatment but, unfortunately, is common in clinical practice (30–32). When patients are found to have an insulin regimen with complexity beyond their self-management abilities, deintensification (or simplification) can reduce hypoglycemia and disease-related distress without worsening glycemic control (33,34).

Metformin
Metformin is the first-line agent for older adults with type 2 diabetes. Recent studies have indicated that it may be used safely in patients with estimated glomerular filtration rate ≥30 mL/min/1.73 m² (35). However, it is contraindicated in patients with advanced renal insufficiency and should be used with caution in patients with impaired hepatic function or congestive heart failure due to the increased risk of lactic acidosis. Metformin may be temporarily discontinued before procedures, during hospitalizations, and when acute illness may compromise renal or liver function.

Thiazolidinediones
Thiazolidinediones, if used at all, should be used very cautiously in those with, or at risk for, congestive heart failure and those at risk for falls or fractures.

Insulin Secretagogues
Sulfonylureas and other insulin secretagogues are associated with hypoglycemia and should be used with caution. If used, shorter-duration sulfonylureas such as glipizide are preferred. Glyburide is a longer-duration sulfonylurea and contraindicated in older adults (36).

Incretin-Based Therapies
Oral dipeptidyl peptidase 4 inhibitors have few side effects and minimal hypoglycemia, but their costs may be a barrier to some older patients. A systematic review concluded that incretin-based agents do not increase major adverse cardiovascular events (37). Glucagon-like peptide 1 receptor agonists are injectable agents, which require visual, motor, and cognitive skills. They may be associated with nausea, vomiting, and diarrhea. Also, weight loss with glucagon-like peptide 1 receptor agonists may not be desirable in some older patients, particularly those with cachexia.

Sodium–Glucose Cotransporter 2 Inhibitors
Sodium–glucose cotransporter 2 inhibitors offer an oral route, which may be convenient for older adults with diabetes; however, long-term experience is limited despite the initial efficacy and safety data reported with these agents.

Insulin Therapy
The use of insulin therapy requires that patients or their caregivers have good visual and motor skills and cognitive ability. Insulin therapy relies on the ability of the older patient to administer insulin on their own or with the assistance of a caregiver. Insulin doses should be titrated to meet individualized glycemic targets and to avoid hypoglycemia.
Once-daily basal insulin injection therapy is associated with minimal side effects and may be a reasonable option in many older patients. Multiple daily injections of insulin may be too complex for the older patient with advanced diabetes complications, life-limiting coexisting chronic illnesses, or limited functional status.

Other Factors to Consider
The needs of older adults with diabetes and their caregivers should be evaluated to construct a tailored care plan. Social difficulties may impair their quality of life and increase the risk of functional dependency (38). The patient’s living situation must be considered, as it may affect diabetes management and support. Social and instrumental support networks (e.g., adult children, caretakers) that provide instrumental or emotional support for older adults with diabetes should be included in diabetes management discussions and shared decision-making.

Older adults in assisted living facilities may not have support to administer their own medications, whereas those living in a nursing home (community living centers) may rely completely on the care plan and nursing support. Those receiving palliative care (with or without hospice) may require an approach that emphasizes comfort and symptom management, while deemphasizing strict metabolic and blood pressure control.

TREATMENT IN SKILLED NURSING FACILITIES AND NURSING HOMES

Recommendations
- Consider diabetes education for the staff of long-term care facilities to improve the management of older adults with diabetes. E
- Patients with diabetes residing in long-term care facilities need careful assessment to establish glycemic goals and to make appropriate choices of glucose-lowering agents based on their clinical and functional status. E

Management of diabetes in the long-term care (LTC) setting (i.e., nursing homes and skilled nursing facilities) is unique. Individualization of health care is important in all patients; however, practical guidance is needed for medical providers as well as the LTC staff and caregivers (39). Training should include diabetes detection and institutional quality assessment. LTC facilities should develop their own policies and procedures for prevention and management of hypoglycemia.

Resources
Staff of LTC facilities should receive appropriate diabetes education to improve the management of older adults with diabetes. Treatments for each patient should be individualized. Special management considerations include the need to avoid both hypoglycemia and the metabolic complications of diabetes and the need to provide adequate diabetes training to LTC staff (24). For more information, see the ADA position statement “Management of Diabetes in Long-term Care and Skilled Nursing Facilities” (38).

Nutritional Considerations
An older adult residing in an LTC facility may have irregular and unpredictable meal consumption, undernutrition, anorexia, and impaired swallowing. Furthermore, therapeutic diets may inadvertently lead to decreased food intake and contribute to unintentional weight loss and underrunutrition. Diets tailored to a patient’s culture, preferences, and personal goals might increase quality of life, satisfaction with meals, and nutrition status (41).

Hypoglycemia
Older adults with diabetes in LTC are especially vulnerable to hypoglycemia. They have a disproportionately high number of clinical complications and comorbidities that can increase hypoglycemia risk: impaired cognitive and renal function, slowed hormonal regulation and counterregulation, suboptimal hydration, variable appetite and nutritional intake, polypharmacy, and slowed intestinal absorption (42). Emerging studies suggest that insulin and noninsulin agents confer similar glycemic outcomes and rates of hypoglycemia in LTC populations (30,43).

Another consideration for the LTC setting is that unlike the hospital setting, medical providers are not required to evaluate the patients daily. According to federal guidelines, assessments should be done at least every 30 days for the first 90 days after admission and then at least once every 60 days. Although in practice the patients may actually be seen more frequently, the concern is that patients may have uncontrolled glucose levels or wide excursions without the practitioner being notified. Providers may make adjustments to treatment regimens by telephone, fax, or order directly at the LTC facilities provided they are given timely notification from a standardized alert system.

The following alert strategy could be considered:

1. **Call provider immediately:** in case of low blood glucose levels (≤70 mg/dL (3.9 mmol/L)). Low finger-stick blood glucose values should be confirmed by laboratory glucose measurement.

2. **Call as soon as possible:** a) glucose values between 70 and 100 mg/dL (between 3.9 and 5.6 mmol/L) (regimen may need to be adjusted), b) glucose values greater than 250 mg/dL (13.9 mmol/L) within a 24-h period, c) glucose values greater than 300 mg/dL (16.7 mmol/L) over 2 consecutive days, d) when any reading is too high for the glucometer, or e) the patient is sick, with vomiting or other malady that can reflect hyperglycemic crisis and may lead to poor oral intake, thus requiring regimen adjustment.

END-OF-LIFE CARE

Recommendations
- When palliative care is needed in older adults with diabetes, strict blood pressure control may not be necessary, and withdrawal of therapy may be appropriate. Similarly, the intensity of lipid management can be relaxed, and withdrawal of lipid-lowering therapy may be appropriate. E
- Overall comfort, prevention of distressing symptoms, and preservation of quality of life and dignity are primary goals for diabetes management at the end of life. E

The management of the older adult at the end of life receiving palliative medicine or hospice care is a unique situation. Overall, palliative medicine promotes comfort, symptom control and prevention (pain, hypoglycemia, hyperglycemia, and dehydration), and preservation of dignity and quality of life in patients with limited life expectancy (40,44). A patient has the right to refuse testing and treatment, whereas providers may consider withdrawing treatment and limiting diagnostic testing, including a reduction in the frequency of finger-stick testing (45). Glucose targets...
should aim to prevent hypoglycemia and hyperglycemia. Treatment interventions need to be mindful of quality of life. Careful monitoring of oral intake is warranted. The decision process may need to involve the patient, family, and caregivers, leading to a care plan that is both convenient and effective for the goals of care (46). The pharmacologic therapy may include oral agents as first line, followed by a simplified insulin regimen. If needed, basal insulin can be implemented, accompanied by oral agents and without rapid-acting insulin. Agents that can cause gastrointestinal symptoms such as nausea or excess weight loss may not be good choices in this setting. As symptoms progress, some agents may be slowly tapered and discontinued.

Different patient categories have been proposed for diabetes management in those with advanced disease (26).

1. A stable patient: continue with the patient’s previous regimen, with a focus on the prevention of hypoglycemia and the management of hyperglycemia using blood glucose testing, keeping levels below the renal threshold of glucose. There is very little role for A1C monitoring and lowering.

2. A patient with organ failure: preventing hypoglycemia is of greater significance. Dehydration must be prevented and treated. In people with type 1 diabetes, insulin administration may be reduced as the oral intake of food decreases but should not be stopped. For those with type 2 diabetes, agents that may cause hypoglycemia should be titrated. The main goal is to avoid hypoglycemia, allowing for glucose values in the upper level of the desired target range.

3. A dying patient: for patients with type 2 diabetes, the discontinuation of all medications may be a reasonable approach, as patients are unlikely to have any oral intake. In patients with type 1 diabetes, there is no consensus, but a small amount of basal insulin may maintain glucose levels and prevent acute hyperglycemic complications.

References

diabetes and kidney disease: a systematic review. JAMA 2014;312:2668–2675

47. Laiteerapong N, Iveniuk J, John PM, Laumann EO, Huang ES. Classification of older adults who have diabetes by comorbid conditions, United States, 2005-2006. Prev Chronic Dis 2012;9:E100
12. Children and Adolescents: Standards of Medical Care in Diabetes—2018

The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

TYPE 1 DIABETES

Three-quarters of all cases of type 1 diabetes are diagnosed in individuals <18 years of age (although recent data using genetic risk scoring would suggest that over 40% of patients with autoimmune diabetes are diagnosed over the age of 30 years) (1). The provider must consider the unique aspects of care and management of children and adolescents with type 1 diabetes, such as changes in insulin sensitivity related to physical growth and sexual maturation, ability to provide self-care, supervision in the child care and school environment, and neurological vulnerability to hypoglycemia and hyperglycemia in young children, as well as possible adverse neurocognitive effects of diabetic ketoacidosis (DKA) (2,3). Attention to family dynamics, developmental stages, and physiological differences related to sexual maturity are all essential in developing and implementing an optimal diabetes treatment plan (4). Due to the nature of clinical research in children, the recommendations for children and adolescents are less likely to be based on clinical trial evidence. However, expert opinion and a review of available and relevant experimental data are summarized in the American Diabetes Association (ADA) position statement “Type 1 Diabetes Through the Life Span” (5) and have been updated in the ADA position statement “Type 1 Diabetes in Children and Adolescents: A Position Statement by the American Diabetes Association” (6).

A multidisciplinary team of specialists trained in pediatric diabetes management and sensitive to the challenges of children and adolescents with type 1 diabetes and their families should provide care for this population. It is essential that diabetes self-management education and support (DSMES), medical nutrition therapy, and psychosocial support be provided at diagnosis and regularly thereafter in a developmentally appropriate format that builds on prior knowledge by individuals experienced with the educational, nutritional, behavioral, and emotional needs of the growing child and family. The appropriate balance between adult supervision and independent self-care should be defined at the first interaction and reevaluated at subsequent visits.
The balance between adult supervision and independent self-care will evolve as the adolescent gradually becomes an emerging young adult.

Diabetes Self-management Education and Support

Recommendation

- Youth with type 1 diabetes and parents/caregivers (for patients aged <18 years) should receive culturally sensitive and developmentally appropriate individualized diabetes self-management education and support according to national standards at diagnosis and routinely thereafter. B

No matter how sound the medical regimen, it can only be effective if the family and/or affected individuals are able to implement it. Family involvement is a vital component of optimal diabetes management throughout childhood and adolescence. Health care providers (the diabetes care team) who care for children and adolescents must be capable of evaluating the educational, behavioral, emotional, and psychosocial factors that impact implementation of a treatment plan and must work with the individual and family to overcome barriers or redefine goals as appropriate. DSME and DSMS require periodic reassessment, especially as the youth grows, develops, and acquires the need for greater independent self-care skills. In addition, it is necessary to assess the educational needs and skills of day care providers, school nurses, or other school personnel who participate in the care of the young child with diabetes (7).

School and Child Care

As a large portion of a child’s day is spent in school, close communication with and the cooperation of school or day care personnel are essential for optimal diabetes management, safety, and maximal academic opportunities. Refer to the ADA position statements “Diabetes Care in the School Setting” (8) and “Care of Young Children With Diabetes in the Child Care Setting” (9) for additional details.

Psychosocial Issues

Recommendations

- At diagnosis and during routine follow-up care, assess psychosocial issues and family stresses that could impact adherence to diabetes management and provide appropriate referrals to trained mental health professionals, preferably experienced in childhood diabetes. E

Rapid and dynamic cognitive, developmental, and emotional changes occur during childhood, adolescence, and emerging adulthood. Diabetes management during childhood and adolescence places substantial burdens on the youth and family, necessitating ongoing assessment of psychosocial status and diabetes distress during routine diabetes visits (10–14). Early detection of depression, anxiety, eating disorders, and learning disabilities can facilitate effective treatment options and help minimize adverse effects on diabetes management and disease outcomes (15). Furthermore, the complexities of diabetes management require ongoing parental involvement in care throughout childhood with developmentally appropriate family teamwork between the growing child/teen and parent in order to maintain adherence and to prevent deterioration in glycemic control (16,17). As diabetes-specific family conflict is related to poorer adherence and glycemic control, it is appropriate to inquire about such conflict during visits and to either help to negotiate a plan for resolution or refer to an appropriate mental health specialist (18). Monitoring of social adjustment (peer relationships) and school performance can facilitate both well-being and academic achievement (19). Suboptimal glycemic control is a risk factor for below average school performance and increased absenteeism (20).

Shared decision-making with youth regarding the adoption of regimen components and self-management behaviors can improve diabetes self-efficacy, adherence, and metabolic outcomes (21). Although cognitive abilities vary, the ethical position often adopted is the “mature minor rule,” whereby children after age 12 or 13 years who appear to be “mature” have the right to consent or withhold consent to general medical treatment, except in cases in which refusal would significantly endanger health (22).

Beginning at the onset of puberty or at diagnosis of diabetes, all adolescent girls and women with childbearing potential should receive education about the risks of malformations associated with unplanned pregnancies and poor metabolic control and the use of effective contraception to prevent unplanned pregnancy. Preconception counseling using developmentally appropriate educational tools enables adolescent girls to make well-informed decisions (23). Preconception counseling resources tailored for adolescents are available at no cost through the ADA (24). Refer to the recent ADA position statement “Psychosocial Care for People With Diabetes” for further details (15).

Screening

Screening for psychosocial distress and mental health problems is an important component of ongoing care. It is important to consider the impact of diabetes on quality of life as well as the development
of mental health problems related to diabetes distress, fear of hypoglycemia (and hyperglycemia), symptoms of anxiety, disordered eating behaviors as well as eating disorders, and symptoms of depression (25). Consider assessing youth for diabetes distress, generally starting at 7 or 8 years of age (15). Consider screening for depression and disordered eating behaviors using available screening tools (10,26). With respect to disordered eating, it is important to recognize the unique and dangerous disordered eating behavior of insulin omission for weight control in type 1 diabetes (27). The presence of a mental health professional on pediatric multidisciplinary teams highlights the importance of attending to the psychosocial issues of diabetes. These psychosocial factors are significantly related to nonadherence, suboptimal glycemic control, reduced quality of life, and higher rates of acute and chronic diabetes complications.

Glycemic Control

Recommendations

- The majority of children and adolescents with type 1 diabetes should be treated with intensive insulin regimens, either via multiple daily injections or continuous subcutaneous insulin infusion. A
- All children and adolescents with type 1 diabetes should self-monitor blood glucose levels multiple times daily, including premeal, prebedtime, and as needed for safety in specific clinical situations such as exercise, driving, or for symptoms of hypoglycemia. B
- Continuous glucose monitoring should be considered in children and adolescents with type 1 diabetes, whether using injections or continuous subcutaneous insulin infusion, as an additional tool to help improve glycemic control. Benefits of continuous glucose monitoring correlate with adherence to ongoing use of the device. B
- Automated insulin delivery systems improve glycemic control and reduce hypoglycemia in adolescents and should be considered in adolescents with type 1 diabetes. B
- An A1C goal of <7.5% (58 mmol/mol) is recommended across all pediatric age-groups. E

Current standards for diabetes management reflect the need to lower glucose as safely as possible. This should be done with stepwise goals. When establishing individualized glycemic targets, special consideration should be given to the risk of hypoglycemia in young children (aged <6 years) who are often unable to recognize, articulate, and/or manage hypoglycemia.

Type 1 diabetes can be associated with adverse effects on cognition during childhood and adolescence. Factors that contribute to adverse effects on brain development and function include young age or DKA at onset of type 1 diabetes, severe hypoglycemia at <6 years of age, and chronic hyperglycemia (28,29). However, meticulous use of new therapeutic modalities, such as rapid- and long-acting insulin analogs, technological advances (e.g., continuous glucose monitors, low-glucose suspend insulin pumps, and automated insulin delivery systems), and intensive self-management education now make it more feasible to achieve excellent glycemic control while reducing the incidence of severe hypoglycemia (30–39). A strong relationship exists between frequency of blood glucose monitoring and glycemic control (32–41).

The Diabetes Control and Complications Trial (DCCT), which did not enroll children <13 years of age, demonstrated that near normalization of blood glucose levels was more difficult to achieve in adolescents than in adults. Nevertheless, the increased use of basal-bolus regimens, insulin pumps, frequent blood glucose monitoring, goal setting, and improved patient education in youth from infancy through adolescence have been associated with more children reaching the blood glucose targets recommended by ADA (42–45), particularly in those families in which both the parents and the child with diabetes participate jointly to perform the required diabetes-related tasks. Furthermore, studies documenting neurocognitive imaging differences related to hyperglycemia in children provide another motivation for lowering glycemic targets (2). In selecting glycemic goals, the long-term health benefits of achieving a lower A1C should be balanced against the risks of hypoglycemia and the developmental burdens of intensive regimens in children and youth. In addition, achieving lower A1C levels is more likely to be related to setting lower A1C targets (46,47). A1C and blood glucose goals are presented in Table 12.1.

Autoimmune Conditions

Recommendation

- Assess for the presence of autoimmune conditions associated with type 1 diabetes soon after the diagnosis and if symptoms develop. B

Because of the increased frequency of other autoimmune diseases in type 1 diabetes, screening for thyroid dysfunction and celiac disease should be considered (48,49). Periodic screening in asymptomatic individuals has been recommended, but the optimal frequency and benefit of screening are unclear.

Although much less common than thyroid dysfunction and celiac disease, other autoimmune conditions, such as Addison

Table 12.1—Blood glucose and A1C goals for children and adolescents with type 1 diabetes

<table>
<thead>
<tr>
<th>Blood glucose goal range</th>
<th>A1C</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>90–130 mg/dL (5.0–7.2 mmol/L)</td>
<td><7.5%</td>
<td>A lower goal (<7.0% [53 mmol/mol]) is reasonable if it can be achieved without excessive hypoglycemia</td>
</tr>
</tbody>
</table>

Key concepts in setting glycemic goals:

- Goals should be individualized, and lower goals may be reasonable based on a benefit-risk assessment.
- Blood glucose goals should be modified in children with frequent hypoglycemia or hypoglycemia unawareness.
- Postprandial blood glucose values should be measured when there is a discrepancy between preprandial blood glucose values and A1C levels and to assess preprandial insulin doses in those on basal-bolus or pump regimens.
disease (primary adrenal insufficiency), autoimmune hepatitis, autoimmune gastritis, dermatomyositis, and myasthenia gravis, occur more commonly in the population with type 1 diabetes than in the general pediatric population and should be assessed and monitored as clinically indicated.

Thyroid Disease

Recommendations
- Consider testing individuals with type 1 diabetes for antithyroid peroxidase and antithyroglobulin antibodies soon after the diagnosis.
- Measure thyroid-stimulating hormone concentrations at diagnosis when clinically stable or soon after glycemic control has been established. If normal, consider rechecking every 1–2 years or sooner if the patient develops symptoms suggestive of thyroid dysfunction, thyromegaly, an abnormal growth rate, or an unexplained glycemic variation.

Autoimmune thyroid disease is the most common autoimmune disorder associated with diabetes, occurring in 17–30% of patients with type 1 diabetes (50). At the time of diagnosis, about 25% of children with type 1 diabetes have thyroid autoantibodies (51); their presence is predictive of thyroid dysfunction—most commonly hypothyroidism, although hyperthyroidism occurs in ~0.5% of patients with type 1 diabetes (52, 53). For thyroid autoantibodies, a recent study from Sweden indicated antithyroid peroxidase antibodies were more predictive than antithyroglobulin antibodies in multivariate analysis (54). Thyroid function tests may be misleading (euthyroid sick syndrome) if performed at the time of diagnosis owing to the effect of previous hyperglycemia, ketosis or ketoacidosis, weight loss, etc. Therefore, if performed at diagnosis and slightly abnormal, thyroid function tests should be performed soon after a period of metabolic stability and good glycemic control. Subclinical hypothyroidism may be associated with increased risk of symptomatic hypoglycemia (55) and reduced linear growth rate. Hyperthyroidism alters glucose metabolism and usually causes deterioration of glycemic control.

Celiac Disease

Recommendations
- Screen individuals with type 1 diabetes for celiac disease soon after the diagnosis of diabetes by measuring IgA tissue transglutaminase antibodies, with documentation of normal total serum IgA levels or, if IgA deficient, IgG tissue transglutaminase and deamidated gliadin antibodies.
- Repeat screening within 2 years of diabetes diagnosis and then again after 5 years and consider more frequent screening in children who have symptoms or a first-degree relative with celiac disease.
- Individuals with biopsy-confirmed celiac disease should be placed on a gluten-free diet and have a consultation with a dietitian experienced in managing both diabetes and celiac disease.

Celiac disease is an immune-mediated disorder that occurs with increased frequency in patients with type 1 diabetes (1.6–16.4% of individuals compared with 0.3–1% in the general population) (48,49, 56–58,59).

Screening. Screening for celiac disease includes measuring serum levels of IgA and tissue transglutaminase antibodies, or, with IgA deficiency, screening can include measuring IgG tissue transglutaminase antibodies or IgG deamidated gliadin peptide antibodies. Because most cases of celiac disease are diagnosed within the first 5 years after the diagnosis of type 1 diabetes, screening should be considered at the time of diagnosis and repeated at 2 and then 5 years (58).

Although celiac disease can be diagnosed more than 10 years after diabetes diagnosis, there are insufficient data after 5 years to determine the optimal screening frequency. Measurement of tissue transglutaminase antibody should be considered at other times in patients with symptoms suggestive of celiac disease (58). A small-bowel biopsy in antibody-positive children is recommended to confirm the diagnosis (60). European guidelines on screening for celiac disease in children (not specific to children with type 1 diabetes) suggest that biopsy may not be necessary in symptomatic children with high antibody titers (i.e., greater than 10 times the upper limit of normal) provided that further testing is performed (verification of endomysial antibody positivity on a separate blood sample). It is also advisable to check for HLA types in patients who are diagnosed without a small intestinal biopsy. Asymptomatic at-risk children should have an intestinal biopsy (61).

In symptomatic children with type 1 diabetes and confirmed celiac disease, gluten-free diets reduce symptoms and rates of hypoglycemia (62). The challenging dietary restrictions associated with having both type 1 diabetes and celiac disease place a significant burden on individuals. Therefore, a biopsy to confirm the diagnosis of celiac disease is recommended, especially in asymptomatic children, before endorsing significant dietary changes. A gluten-free diet was beneficial in asymptomatic adults with positive antibodies confirmed by biopsy (63).

Management of Cardiovascular Risk Factors

Hypertension

Screening
- Blood pressure should be measured at each routine visit. Children found to have high-normal blood pressure (systolic blood pressure or diastolic blood pressure ≥90th percentile for age, sex, and height) or hypertension (systolic blood pressure or diastolic blood pressure ≥95th percentile for age, sex, and height) should have elevated blood pressure confirmed on 3 separate days.

Treatment
- Initial treatment of high-normal blood pressure (systolic blood pressure or diastolic blood pressure consistently ≥90th percentile for age, sex, and height) includes dietary modification and increased exercise, if appropriate, aimed at weight control. If target blood pressure is not reached within 3–6 months of initiating lifestyle intervention, pharmacologic treatment should be considered.
- In addition to lifestyle modification, pharmacologic treatment of hypertension (systolic blood pressure or diastolic blood pressure consistently ≥95th percentile for age, sex, and height) should be considered as
Blood pressure measurements should be performed using the appropriate size cuff with the child seated and relaxed. Hypertension should be confirmed on at least 3 separate days. Evaluation should proceed as clinically indicated. Treatment is generally initiated with an ACE inhibitor, but an angiotensin receptor blocker can be used if the ACE inhibitor is not tolerated (e.g., due to cough) (64).

Normal blood pressure levels for age, sex, and height and appropriate methods for measurement are available online at nhlbi.nih.gov/files/docs/resources/heart/hbp_ped.pdf.

Dyslipidemia

Recommendations

Testing
- Obtain a lipid profile in children ≥10 years of age soon after the diagnosis of diabetes (after glucose control has been established). If abnormal, repeat lipid profile after fasting. E
- If lipids are abnormal, annual monitoring is reasonable. If LDL cholesterol values are within the accepted risk level (<100 mg/dL [2.6 mmol/L]), a lipid profile repeated every 5 years is reasonable. E

Treatment
- Initial therapy should consist of optimizing glucose control and medical nutrition therapy using a Step 2 American Heart Association diet to decrease the amount of saturated fat in the diet. B
- After the age of 10 years, addition of a statin is suggested in patients who, despite medical nutrition therapy and lifestyle changes, continue to have LDL cholesterol >160 mg/dL (4.1 mmol/L) or LDL cholesterol ≥130 mg/dL (3.4 mmol/L) and one or more cardiovascular disease risk factors, following reproductive counseling and implementation of effective birth control due to the potential teratogenic effects of both drug classes. E
- The goal of therapy is an LDL cholesterol value <100 mg/dL (2.6 mmol/L). E

Population-based studies estimate that 14–45% of children with type 1 diabetes have two or more atherosclerotic cardiovascular disease (ASCVD) risk factors (65–67), and the prevalence of CVD risk factors increases with age (67), with girls having a higher risk burden than boys (66).

Pathophysiology. The atherosclerotic process begins in childhood, and although ASCVD events are not expected to occur during childhood, observations using a variety of methodologies show that youth with type 1 diabetes may have subclinical CVD within the first decade of diagnosis (68–70). Studies of carotid intima-media thickness have yielded inconsistent results (64).

Treatment. Pediatric lipid guidelines provide some guidance relevant to children with type 1 diabetes (71–73); however, there are few studies on modifying lipid levels in children with type 1 diabetes. A 6-month trial of dietary counseling produced a significant improvement in lipid levels (74); likewise, a lifestyle intervention trial with 6 months of exercise in adolescents demonstrated improvement in lipid levels (75).

Although intervention data are sparse, the American Heart Association categorizes children with type 1 diabetes in the highest tier for cardiovascular risk and recommends both lifestyle and pharmacologic treatment for those with elevated LDL cholesterol levels (73,76). Initial therapy should be with a Step 2 American Heart Association diet, which restricts saturated fat to 7% of total calories and restricts dietary cholesterol to 200 mg/day. Data from randomized clinical trials in children as young as 7 months of age indicate that this diet is safe and does not interfere with normal growth and development (77).

For children with a significant family history of CVD, the National Heart, Lung, and Blood Institute recommends obtaining a fasting lipid panel beginning at 2 years of age (71). Abnormal results from a random lipid panel should be confirmed with a fasting lipid panel. Data from the SEARCH for Diabetes in Youth (SEARCH) study show that improved glucose control over a 2-year period is associated with a more favorable lipid profile; however, improved glycemic control alone will not normalize lipids in youth with type 1 diabetes and dyslipidemia (78).

Neither long-term safety nor cardiovascular outcome efficacy of statin therapy has been established for children; however, studies have shown short-term safety equivalent to that seen in adults and efficacy in lowering LDL cholesterol levels in familial hypercholesterolemia or severe hyperlipidemia, improving endothelial function and causing regression of carotid intimal thickening (79,80). Statins are not approved for patients aged <10 years, and statin treatment should generally not be used in children with type 1 diabetes before this age. Statins are contraindicated in pregnancy; therefore, prevention of unplanned pregnancies is of paramount importance for postpubertal girls (see Section 13 “Management of Diabetes in Pregnancy” for more information). The multicenter, randomized, placebo-controlled Adolescent Type 1 Diabetes Cardio-Renal Intervention Trial (AdDiT) provides safety data on pharmacologic treatment with an ACE inhibitor and statin in adolescents with type 1 diabetes.

Smoking

Recommendation
- Elicit a smoking history at initial and follow-up diabetes visits; discourage smoking in youth who do not smoke, and encourage smoking cessation in those who do smoke. A

The adverse health effects of smoking are well recognized with respect to future cancer and CVD risk. Despite this, smoking rates are significantly higher among youth with diabetes than among youth without diabetes (81,82). In youth with diabetes, it is important to avoid additional CVD risk factors. Smoking increases the risk of onset of albuminuria; therefore, smoking avoidance is important to prevent both microvascular and macrovascular complications (71,83). Discouraging cigarette smoking, including e-cigarettes,
is an important part of routine diabetes care. In younger children, it is important to assess exposure to cigarette smoke in the home due to the adverse effects of secondhand smoke and to discourage youth from ever smoking if exposed to smokers in childhood.

Microvascular Complications

<table>
<thead>
<tr>
<th>Diabetic Kidney Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommendations</td>
</tr>
<tr>
<td>Screening</td>
</tr>
<tr>
<td>• Annual screening for albuminuria with a random spot urine sample for albumin-to-creatinine ratio should be performed at puberty or at age ≥10 years, whichever is earlier, once the child has had diabetes for 5 years. B</td>
</tr>
<tr>
<td>Treatment</td>
</tr>
<tr>
<td>• When persistently elevated urinary albumin-to-creatinine ratio (>30 mg/g) is documented with at least two of three urine samples, treatment with an ACE inhibitor or angiotensin receptor blocker may be considered and the dose titrated to maintain blood pressure within the age-appropriate normal range. The urine samples should be obtained over a 6-month interval following efforts to improve glycemic control and normalize blood pressure. B</td>
</tr>
</tbody>
</table>

Data from 7,549 participants <20 years of age in the T1D Exchange clinic registry emphasize the importance of good glycemic and blood pressure control, particularly as diabetes duration increases, in order to reduce the risk of diabetic kidney disease. The data also underscore the importance of routine screening to ensure early diagnosis and timely treatment of albuminuria (84). An estimation of glomerular filtration rate (GFR), calculated using GFR estimating equations from the serum creatinine, height, age, and sex (85), should be considered at baseline and repeated as indicated based on clinical status, age, diabetes duration, and therapies. Improved methods are needed to screen for early GFR loss, since estimated GFR is inaccurate at GFR >60 ml/min/1.73 m² (85,86). The AdDIT study in adolescents with type 1 diabetes demonstrated safety of ACE inhibitor treatment, but did not change the urinary albumin-to-creatinine ratio over the course of the study (87).

<table>
<thead>
<tr>
<th>Retinopathy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommendations</td>
</tr>
<tr>
<td>• An initial dilated and comprehensive eye examination is recommended once youth have had type 1 diabetes for 3–5 years, provided they are age ≥10 years or puberty has started, whichever is earlier. B</td>
</tr>
<tr>
<td>• After the initial examination, annual routine follow-up is generally recommended. Less-frequent examinations, every 2 years, may be acceptable on the advice of an eye care professional and based on risk factor assessment. E</td>
</tr>
</tbody>
</table>

Retinopathy (like albuminuria) most commonly occurs after the onset of puberty and after 5–10 years of diabetes duration (88). Referrals should be made to eye care professionals with expertise in diabetic retinopathy and experience in counseling the pediatric patient and family on the importance of early prevention and intervention.

<table>
<thead>
<tr>
<th>Neuropathy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommendation</td>
</tr>
<tr>
<td>• Consider an annual comprehensive foot exam at the start of puberty or at age ≥10 years, whichever is earlier, once the youth has had type 1 diabetes for 5 years. B</td>
</tr>
</tbody>
</table>

Diabetic neuropathy rarely occurs in prepubertal children or after only 1–2 years of diabetes (88), although data suggest a prevalence of distal peripheral neuropathy of 7% in 1,734 youth with type 1 diabetes and associated with the presence of CVD risk factors (89). A comprehensive foot exam, including inspection, palpation of dorsalis pedis and posterior tibial pulses, and determination of proprioception, vibration, and monofilament sensation, should be performed annually along with an assessment of symptoms of neuropathic pain (90). Foot inspection can be performed at each visit to educate youth regarding the importance of foot care (see Section 10 “Microvascular Complications and Foot Care”).

Type 2 Diabetes

For information on testing for type 2 diabetes and prediabetes in children and adolescents, please refer to Section 2 "Classification and Diagnosis of Diabetes.” For additional support for these recommendations, see the ADA position statement “Evaluation and Management of Youth-Onset Type 2 Diabetes (91). Type 2 diabetes in youth has increased over the past 20 years, and recent estimates suggest an incidence of ~5,000 new cases per year in the U.S. (92). The Centers for Disease Control and Prevention published projections for type 2 diabetes prevalence using the SEARCH database—assuming a 2.3% annual increase, the prevalence in those under 20 years of age will quadruple in 40 years (93,94).

Evidence suggests that type 2 diabetes in youth is different not only from type 1 diabetes but also from type 2 diabetes in adults and has unique features, such as a more rapidly progressive decline in β-cell function and accelerated development of diabetes complications (95,96). Type 2 diabetes disproportionately impacts youth of ethnic and racial minorities and can occur in complex psychosocial and cultural environments, which may make it difficult to sustain healthy lifestyle changes and self-management behaviors. Additional risk factors associated with type 2 diabetes in youth include adiposity, family history of diabetes, female sex, and low socioeconomic status (96).

As with type 1 diabetes, youth with type 2 diabetes spend much of the day in school. Therefore, close communication with and the cooperation of school personnel are essential for optimal diabetes management, safety, and maximal academic opportunities.

<table>
<thead>
<tr>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening and Diagnosis</td>
</tr>
<tr>
<td>• Risk-based screening for prediabetes and/or type 2 diabetes should be considered in children and adolescents after the onset of puberty or ≥10 years of age, whichever occurs earlier, who are overweight (BMI >85th %) or obese (BMI >95th %) and who have one or more additional risk factors for diabetes (see Table 2.5). A</td>
</tr>
<tr>
<td>• If tests are normal, repeat testing at a minimum of 3-year intervals E, or more frequently if BMI is increasing. C</td>
</tr>
</tbody>
</table>
| • Fasting plasma glucose, 2-h plasma glucose during a 75-g oral glucose tolerance test, and A1C can be used...
In the last decade, the incidence and prevalence of type 2 diabetes in adolescents has increased dramatically, especially in racial and ethnic minority populations (97). A few recent studies suggest oral glucose tolerance tests or fasting plasma glucose values as more suitable diagnostic tests than A1C in the pediatric population, especially among certain ethnicities (98). However, many of these studies do not recognize that diabetes diagnostic criteria are based on long-term health outcomes, and validations are not currently available in the pediatric population (99). ADA acknowledges the limited data supporting A1C for diagnosing type 2 diabetes in children and adolescents. Although A1C is recommended for diagnosis of diabetes in children with cystic fibrosis or symptoms suggestive of acute onset of type 1 diabetes and only A1C assays without interferences are appropriate for children with hemoglobinopathies, ADA continues to recommend A1C for diagnosis of type 2 diabetes in this population (100,101).

Diagnostic Challenges

Given the current obesity epidemic, distinguishing between type 1 and type 2 diabetes in children can be difficult. Overweight and obesity are common in children with type 1 diabetes (102), and diabetes-associated autoantibodies and ketosis may be present in pediatric patients with features of type 2 diabetes (including obesity and acanthosis nigricans) (103). At onset, DKA occurs in ~6% of youth aged 10–19 years with type 2 diabetes (104). Accurate diagnosis is critical, as management regimens, educational approaches, dietary advice, and outcomes differ markedly between patients with the two diagnoses.

Management

Recommendations

Lifestyle Management

- Overweight or obese youth with type 2 diabetes and their families should be provided with developmentally and culturally appropriate comprehensive lifestyle programs that are integrated with diabetes management to achieve 7–10% decrease in excess weight. C

- Given the necessity of long-term weight management for children and adolescents with type 2 diabetes, lifestyle intervention should be based on a chronic care model and offered in the context of diabetes care. E

- Youth with diabetes, like all children, should be encouraged to participate in at least 60 min of moderate to vigorous physical activity per day (and strength training on at least 3 days/week) B and to decrease sedentary behavior. C

- Nutrition for youth with type 2 diabetes, like all children, should focus on healthy eating patterns that emphasize consumption of nutrient-dense, high-quality foods and decreased consumption of calorie-dense, nutrient-poor foods, particularly sugar-added beverages. B

Pharmacologic Management

- Initiate pharmacologic therapy, in addition to lifestyle therapy, at diagnosis of type 2 diabetes. A

- In metabolically stable patients (A1C <8.5% and asymptomatic), metformin is the initial pharmacologic treatment of choice if renal function is >30 ml/min/1.73 m². A

- Youth with marked hyperglycemia (blood glucose ≥250 mg/dL [13.9 mmol/L], A1C ≥8.5% [69 mmol/mol]) without ketoacidosis at diagnosis who are symptomatic with polyuria, polydipsia, nocturia, and/or weight loss should be treated initially with basal insulin while metformin is initiated and titrated to maximally tolerated dose to achieve A1C goal. E

- When the A1C target is no longer met with metformin monotherapy, or if contraindications or intolerable side effects of metformin develop, basal insulin therapy should be initiated. E

- In patients initially treated with basal insulin and metformin who are meeting glucose targets based on home blood glucose monitoring, basal insulin can be tapered over 2–6 weeks by decreasing the insulin dose by 10–30% every few days. A

- Use of medications not approved by the U.S. Food and Drug Administration for youth with type 2 diabetes is not recommended outside of research trials. B

- All youth with type 2 diabetes and their families should receive comprehensive diabetes self-management education and support that is specific to youth with type 2 diabetes and culturally competent. B

The general treatment goals for youth with type 2 diabetes are the same as those for youth with type 1 diabetes. A multidisciplinary diabetes team, including a physician, diabetes nurse educator, registered dietician, and psychologist or social worker, is essential. In addition to blood glucose control, initial treatment must include management of comorbidities such as obesity, dyslipidemia, hypertension, and microvascular complications.

Current treatment options for youth-onset type 2 diabetes are limited to two approved drugs—insulin and metformin (95). Presentation with ketosis or ketoacidosis requires a period of insulin therapy until fasting and postprandial glycosemia have been restored to normal or near-normal levels. Metformin therapy may be used as an adjunct after resolution of ketosis/ketoacidosis. Initial treatment should also be with insulin when the distinction between type 1 diabetes and type 2 diabetes is unclear and in patients who have random blood glucose concentrations 250 mg/dL (13.9 mmol/L) and/or A1C ≥8.5% (69 mmol/mol) (105).

Patients and their families must prioritize lifestyle modifications such as eating a balanced diet, achieving and maintaining a healthy weight, and exercising regularly. A family-centered approach to nutrition and lifestyle modification is essential in children with type 2 diabetes, and nutrition recommendations should be culturally appropriate and sensitive to family resources (see Section 4 “Lifestyle Management”).

Given the complex social and environmental context surrounding youth with type 2 diabetes, individual-level lifestyle interventions may not be sufficient to target the complex interplay of family dynamics, mental health, community readiness, and the broader environmental system (95).

When insulin treatment is not required, initiation of metformin is recommended. The Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) study found that metformin alone provided durable glycemic control (A1C ≤8% [64 mmol/mol] for 6 months) in approximately half of the subjects (106). To date,
the TODAY study is the only trial combining lifestyle and metformin therapy in youth with type 2 diabetes; the combination did not perform better than metformin alone in achieving durable glycemic control (106).

Small retrospective analyses and a recent prospective multicenter nonrandomized study suggest that bariatric or metabolic surgery may have similar benefits in obese adolescents with type 2 diabetes compared with those observed in adults. Teenagers experience similar degrees of weight loss, diabetes remission, and improvement of cardiometabolic risk factors for at least 3 years after surgery (107). No randomized trials, however, have yet compared the effectiveness and safety of surgery to those of conventional treatment options in adolescents (108).

Comorbidities

Comorbidities may already be present at the time of diagnosis of type 2 diabetes in youth (96,109). Therefore, blood pressure measurement, a fasting lipid panel, assessment of random urine albumin-to-creatinine ratio, and a dilated eye examination should be performed at diagnosis. Thereafter, screening guidelines and treatment recommendations for hypertension, dyslipidemia, urine albumin excretion, and retinopathy are similar to those for youth with type 1 diabetes. Additional problems that may need to be addressed include polycystic ovary disease and other comorbidities associated with pediatric obesity, such as sleep apnea, hepatic steatosis, orthopedic complications, and psychosocial concerns. The ADA consensus report “Youth-Onset Type 2 Diabetes Consensus Report: Current Status, Challenges, and Priorities” (95) and an American Academy of Pediatrics clinical practice guideline (110) provide guidance on the prevention, screening, and treatment of type 2 diabetes and its comorbidities in children and adolescents.

TRANSITION FROM PEDIATRIC TO ADULT CARE

Recommendations

- Pediatric diabetes providers and families should begin to prepare youth for transition in early adolescence and, at the latest, at least 1 year before the transition to adult health care. E
- Both pediatric and adult diabetes care providers should provide sup-

port and links to resources for transitioning young adults. B

Care and close supervision of diabetes management are increasingly shifted from parents and other adults to the youth with type 1 or type 2 diabetes throughout childhood and adolescence. The shift from pediatric to adult health care providers, however, often occurs abruptly as the older teen enters the next developmental stage referred to as emerging adulthood (111), which is a critical period for young people who have diabetes. During this period of major life transitions, youth begin to move out of their parents’ homes and must become fully responsible for their diabetes care. Their new responsibilities include self-management of their diabetes, making medical appointments, and financing health care, once they are no longer covered by their parents’ health insurance plans (ongoing coverage until age 26 years is currently available under provisions of the U.S. Affordable Care Act). In addition to lapses in health care, this is also a period associated with deterioration in glycemic control; increased occurrence of acute complications; psychosocial, emotional, and behavioral challenges; and the emergence of chronic complications (112–115). The transition period from pediatric to adult care is prone to fragmentation in health care delivery, which may adversely impact health care quality, cost, and outcomes (116).

Although scientific evidence is limited, it is clear that comprehensive and coordinated planning that begins in early adolescence, or at least 1 year before the date of transition, is necessary to facilitate a seamless transition from pediatric to adult health care (112,113,117–119). A comprehensive discussion regarding the challenges faced during this period, including specific recommendations, is found in the ADA position statement “Diabetes Care for Emerging Adults: Recommendations for Transition From Pediatric to Adult Diabetes Care Systems” (113). The Endocrine Society in collaboration with the ADA and other organizations has developed transition tools for clinicians and youth and families (118).

References

5. Chiang JL, Kirkman MS, Laffel LMB, Peters AL; Type 1 Diabetes Sourcebook authors. Type 1 diabetes through the life span: a position statement of the American Diabetes Association. Diabetes Care 2014;37:2034–2054

51. TrioLO TM, Armstrong TK, McFann K, et al. Additional autoimmune disease found in 33% of patients at type 1 diabetes onset. Diabetes Care 2011;34:1211–1213

59. Craig ME, Prinz N, Boyle CT, et al.; Australasian Diabetes Data Network (ADDN); T1D Exchange Clinic Network (T1DX); National Paediatric Diabetes Audit (NPDA) and the Royal College of Paediatrics and Child Health; Prospective Diabetest Follow-up Registry (DPV) initiative. Prevalence of celiac disease in 52,721 youth with type 1 diabetes: international comparison across three continents. Diabetes Care 2017;40:1034–1040

64. de Ferranti SD, de Boer IH, Fonseca V, et al. Type 1 diabetes mellitus and cardiovascular disease: a scientific statement from the American Heart Association and American Diabetes Association. Circulation 2014;130:1110–1130
73. Kavey R-EW, Allada V, Daniels SR, et al.; American Heart Association Expert Panel on Population and Prevention Science; American Heart Association Council on Cardiovascular Disease in the Young; American Heart Association Council on Epidemiology and Prevention; American Heart Association Council on Nutrition, Physical Activity and Metabolism; American Heart Association Council on Heart Failure and Ventricular Dysfunction; American Heart Association Council on Cardiovascular Nursing; American Heart Association Council on the Kidney in Heart Disease; Interdisciplinary Working Group on Quality of Care and Outcomes Research. Cardiovascular risk reduction in high-risk pediatric patients: a scientific statement from the American Heart Association Expert Panel on Population and Prevention Science; the Councils on Cardiovascular Disease in the Young, Epidemiology and Prevention, Nutrition, Physical Activity and Metabolism, High Blood Pressure Research, Cardiovascular Nursing, and the Kidney in Heart Disease; and the Interdisciplinary Working Group on Quality of Care and Outcomes Research: endorsed by the American Academy of Pediatrics. Circulation 2006;114:2710–2738
76. McCrindle BW, Urbina EM, Dennis BA, et al.; American Heart Association Atherosclerosis, Hypertension, and Obesity in Youth Committee; American Heart Association Council of Cardiovascular Disease in the Young; American Heart Association Council on Cardiovascular Nursing. Drug therapy of high-risk lipid abnormalities in children and adolescents: a scientific statement from the American Heart Association Atherosclerosis, Hypertension, and Obesity in Youth Committee, Council of Cardiovascular Disease in the Young, with the Council on Cardiovascular Nursing. Circulation 2007;115:1948–1967
113. Peters A, Lafler L; American Diabetes Association Transitions Working Group. Diabetes care for emerging adults: recommendations for transition from pediatric to adult diabetes care systems: a position statement of the American Diabetes Association, with representation by the American College of Osteopathic Family Physicians, the American Academy of Pediatrics, the American Association of Clinical Endocrinologists, the American Osteopathic Association, the Centers for Disease Control and Prevention, Children with Diabetes, The Endocrine Society, the International Society for Pediatric and Adolescent Diabetes, Juvenile Diabetes Research Foundation International, the National Diabetes Education Program, and the Pediatric Endocrine Society (formerly Lawson Wilkins Pediatric Endocrine Society). Diabetes Care 2011;34:2477–2485
13. Management of Diabetes in Pregnancy: *Standards of Medical Care in Diabetes—2018*

Diabetes Care 2018;41(Suppl. 1):S137–S143 | https://doi.org/10.2337/dc18-S013

The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

DIABETES IN PREGNANCY

The prevalence of diabetes in pregnancy has been increasing in the U.S. The majority is gestational diabetes mellitus (GDM) with the remainder primarily preexisting type 1 diabetes and type 2 diabetes. The rise in GDM and type 2 diabetes in parallel with obesity both in the U.S. and worldwide is of particular concern. Both type 1 diabetes and type 2 diabetes in pregnancy confer significantly greater maternal and fetal risk than GDM, with some differences according to type of diabetes as outlined below. In general, specific risks of uncontrolled diabetes in pregnancy include spontaneous abortion, fetal anomalies, preeclampsia, fetal demise, macrosomia, neonatal hypoglycemia, and neonatal hyperbilirubinemia, among others. In addition, diabetes in pregnancy may increase the risk of obesity and type 2 diabetes in offspring later in life (1,2).

PRECONCEPTION COUNSELING

<table>
<thead>
<tr>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting at puberty, preconception counseling should be incorporated into routine diabetes care for all girls of childbearing potential. A</td>
</tr>
<tr>
<td>Family planning should be discussed and effective contraception should be prescribed and used until a woman is prepared and ready to become pregnant. A</td>
</tr>
<tr>
<td>Preconception counseling should address the importance of glycemic control as close to normal as is safely possible, ideally A1C < 6.5% (48 mmol/mol), to reduce the risk of congenital anomalies. B</td>
</tr>
</tbody>
</table>

All women of childbearing age with diabetes should be counseled about the importance of tight glycemic control prior to conception. Observational studies show an increased risk of diabetic embryopathy, especially anencephaly, microcephaly,
congenital heart disease, and caudal regression, directly proportional to elevations in A1C during the first 10 weeks of pregnancy. Although observational studies are confounded by the association between elevated periconceptional A1C and other poor self-care behaviors, the quantity and consistency of data are convincing and support the recommendation to optimize glycemic control prior to conception, with A1C <6.5% (48 mmol/mol) associated with the lowest risk of congenital anomalies (3,4).

There are opportunities to educate all women and adolescents of reproductive age with diabetes about the risks of unplanned pregnancies and improved maternal and fetal outcomes with pregnancy planning (5). Effective preconception counseling could avert substantial health and associated cost burdens in offspring (6). Family planning should be discussed, and effective contraception should be prescribed and used until a woman is prepared and ready to become pregnant.

To minimize the occurrence of complications, beginning at the onset of puberty or at diagnosis, all women with diabetes of childbearing potential should receive education about 1) the risks of malformations associated with unplanned pregnancies and poor metabolic control and 2) the use of effective contraception at all times when preventing a pregnancy. Preconception counseling using developmentally appropriate educational tools enables adolescent girls to make well-informed decisions (5). Preconception counseling resources tailored for adolescents are available at no cost through the American Diabetes Association (ADA) (7).

Preconception counseling visits should include rubella, syphilis, hepatitis B virus, and HIV testing, as well as Pap smear, cervical cultures, blood typing, prescription of prenatal vitamins (with at least 400 μg of folic acid), and smoking cessation counseling if indicated. Diabetes-specific testing should include A1C, thyroid-stimulating hormone, creatinine, and urinary albumin-to-creatinine ratio; review of the medication list for potentially teratogenic drugs, i.e., ACE inhibitors (8), angiotensin receptor blockers (8), and statins (9,10); and referral for a comprehensive eye exam. Women with preexisting diabetic retinopathy will need close monitoring during pregnancy to ensure that retinopathy does not progress.

GLYCEMIC TARGETS IN PREGNANCY

Recommendations
- Fasting and postprandial self-monitoring of blood glucose are recommended in both gestational diabetes mellitus and preexisting diabetes in pregnancy to achieve glycemic control. Some women with preexisting diabetes should also test blood glucose preprandially.
- Due to increased red blood cell turnover, A1C is slightly lower in normal pregnancy than in normal nonpregnant women. The A1C target in pregnancy is 6–6.5% (42–48 mmol/mol); <6% (42 mmol/mol) may be optimal if this can be achieved without significant hypoglycemia, but the target may be relaxed to <7% (53 mmol/mol) if necessary to prevent hypoglycemia.

Pregnancy in women with normal glucose metabolism is characterized by fasting levels of blood glucose that are lower than in the nonpregnant state due to insulin-independent glucose uptake by the fetus and placenta and by postprandial hyperglycemia and carbohydrate intolerance as a result of diabetogenic placental hormones. In patients with preexisting diabetes, glycemic targets are usually achieved through a combination of insulin administration and medical nutrition therapy. Because glycemic targets in pregnancy are stricter than in nonpregnant individuals, it is important that women with diabetes eat consistent amounts of carbohydrates to match with insulin dosage and to avoid hyperglycemia or hypoglycemia. Referral to a registered dietitian is important in order to establish a food plan and insulin-to-carbohydrate ratio and to determine weight gain goals.

Insulin Physiology
Early pregnancy is a time of insulin sensitivity, lower glucose levels, and lower insulin requirements in women with type 1 diabetes. The situation rapidly reverses as insulin resistance increases exponentially during the second and early third trimesters and levels off toward the end of the third trimester. In women with normal pancreatic function, insulin production is sufficient to meet the challenge of this physiological insulin resistance and to maintain normal glucose levels. However, in women with GDM or preexisting diabetes, hyperglycemia occurs if treatment is not adjusted appropriately.

Glucose Monitoring
Reflecting this physiology, fasting and postprandial monitoring of blood glucose is recommended to achieve metabolic control in pregnant women with diabetes. Preprandial testing is also recommended for women with preexisting diabetes using insulin pumps or basal-bolus therapy, so that premeal rapid-acting insulin dosage can be adjusted. Postprandial monitoring is associated with better glycemic control and lower risk of preeclampsia (11–13). There are no adequately powered randomized trials comparing different fasting and postmeal glycemic targets in diabetes in pregnancy.

Similar to the targets recommended by the American College of Obstetricians and Gynecologists (14), the ADA-recommended targets for women with type 1 or type 2 diabetes (the same as for GDM; described below) are as follows:
- Fasting <95 mg/dL (5.3 mmol/L) and either
- One-hour postprandial <140 mg/dL (7.8 mmol/L) or
- Two-hour postprandial <120 mg/dL (6.7 mmol/L)

These values represent optimal control if they can be achieved safely. In practice, it may be challenging for women with type 1 diabetes to achieve these targets without hypoglycemia, particularly women with a history of recurrent hypoglycemia or hypoglycemia unawareness.
If women cannot achieve these targets without significant hypoglycemia, the ADA suggests less stringent targets based on clinical experience and individualization of care.

A1C in Pregnancy

Observational studies show the lowest rates of adverse fetal outcomes in association with A1C <6–6.5% (42–48 mmol/mol) early in gestation (4,15–17). Clinical trials have not evaluated the risks and benefits of achieving these targets, and treatment goals should account for the risk of maternal hypoglycemia in setting an individualized target of <6% (42 mmol/mol) to <7% (53 mmol/mol). Due to physiological increases in red blood cell turnover, A1C levels fall during normal pregnancy (18,19). Additionally, as A1C represents an integrated measure of glucose, it may not fully capture postprandial hyperglycemia, which drives macrosomia. Thus, although A1C may be useful, it should be used as a secondary measure of glycemic control in pregnancy, after self-monitoring of blood glucose.

In the second and third trimesters, A1C <6% (42 mmol/mol) has the lowest risk of large-for-gestational-age infants, whereas other adverse outcomes increase with A1C >6.5% (48 mmol/mol). Taking all of this into account, a target of 6–6.5% (42–48 mmol/mol) is recommended but <6% (42 mmol/mol) may be optimal as pregnancy progresses. These levels should be achieved without hypoglycemia, which, in addition to the usual adverse sequela, may increase the risk of low birth weight. Given the alteration in red blood cell kinetics during pregnancy and physiological changes in glycemic parameters, A1C levels may need to be monitored more frequently than usual (e.g., monthly).

MANAGEMENT OF GESTATIONAL DIABETES MELLITUS

Recommendations

- Lifestyle change is an essential component of management of gestational diabetes mellitus and may suffice for the treatment of many women. Medications should be added if needed to achieve glycemic targets.
- Insulin is the preferred medication for treating hyperglycemia in gestational diabetes mellitus as it does not cross the placenta to a measurable extent. Metformin and glyburide may be used, but both cross the placenta to the fetus, with metformin likely crossing to a greater extent than glyburide. All oral agents lack long-term safety data.
- Metformin, when used to treat polycystic ovary syndrome and induce ovulation, need not be continued once pregnancy has been confirmed.

GDM is characterized by increased risk of macrosomia and birth complications and an increased risk of maternal type 2 diabetes after pregnancy. The association of macrosomia and birth complications with oral glucose tolerance test (OGTT) results is continuous with no clear inflection points (20). In other words, risks increase with progressive hyperglycemia. Therefore, all women should be tested as outlined in Section 2 “Classification and Diagnosis of Diabetes.” Although there is some heterogeneity, many randomized controlled trials suggest that the risk of GDM may be reduced by diet, exercise, and lifestyle counseling, particularly when interventions are started during the first or early in the second trimester (21–23).

Lifestyle Management

After diagnosis, treatment starts with medical nutrition therapy, physical activity, and weight management depending on gestational weight, as outlined in the section below on preexisting type 2 diabetes, and glucose monitoring aiming for the targets recommended by the Fifth International Workshop-Conference on Gestational Diabetes Mellitus (24):

- Fasting <95 mg/dL (5.3 mmol/L) and either
- One-hour postprandial <140 mg/dL (7.8 mmol/L) or
- Two-hour postprandial <120 mg/dL (6.7 mmol/L)

Depending on the population, studies suggest that 70–85% of women diagnosed with GDM under Carpenter-Coustan or National Diabetes Data Group (NDDG) criteria can control GDM with lifestyle modification alone; it is anticipated that this proportion will be even higher if the lower International Association of the Diabetes and Pregnancy Study Groups (IADPSG) (25) diagnostic thresholds are used. A recent randomized controlled trial suggests that women with mild GDM (fasting plasma glucose <95 mg/dL [5.3 mmol/L]) who meet glucose goals after a week of medical nutrition therapy can safely perform self-monitoring of blood glucose every other day, rather than daily (26).

Medical Nutrition Therapy

Medical nutrition therapy for GDM is an individualized nutrition plan developed between the woman and a registered dietitian familiar with the management of GDM (27,28). The food plan should provide adequate calorie intake to promote fetal/neonatal and maternal health, achieve glycemic goals, and promote appropriate gestational weight gain. There is no definitive research that identifies a specific optimal calorie intake for women with GDM or suggests that their calorie needs are different from those of pregnant women without GDM. The food plan should be based on a nutrition assessment with guidance from the Dietary Reference Intakes (DRI). The DRI for all pregnant women recommends a minimum of 175 g of carbohydrate, a minimum of 71 g of protein, and 28 g of fiber. As is true for all nutrition therapy in patients with diabetes, the amount and type of carbohydrate will impact glucose levels, especially postmeal excursions.

Pharmacologic Therapy

Women with greater initial degrees of hyperglycemia may require earlier initiation of pharmacologic therapy. Treatment has been demonstrated to improve perinatal outcomes in two large randomized studies as summarized in a U.S. Preventive Services Task Force review (29). Insulin is the first-line agent recommended for treatment of GDM in the U.S. While individual randomized controlled trials support the efficacy and short-term safety of metformin (30,31) and glyburide (32) for the treatment of GDM, both agents cross the placenta. There is not agreement regarding the comparative advantages and disadvantages of the two oral agents; the most recent systematic review of randomized controlled trials comparing metformin and glyburide for GDM found no clear differences in maternal or neonatal outcomes (33). A more recent randomized controlled trial demonstrated that glyburide and metformin are comparable oral treatments for GDM regarding glucose control and adverse effects. In this study, they were combined, with data demonstrating a high efficacy rate with a significantly
reduced need for insulin, with a possible advantage for metformin over glyburide as first-line therapy (34). However, more definitive studies are required in this area. Long-term safety data are not available for any oral agent (35).

Sulfonylureas

Concentrations of glyburide in umbilical cord plasma are approximately 70% of maternal levels (36). Glyburide was associated with a higher rate of neonatal hypoglycemia and macrosomia than insulin or metformin in a 2015 systematic review (37).

Metformin

Metformin was associated with a lower risk of neonatal hypoglycemia and less maternal weight gain than insulin in 2015 systematic reviews (37–39); however, metformin may slightly increase the risk of prematurity. Furthermore, nearly half of patients with GDM who were initially treated with metformin in a randomized trial needed insulin in order to achieve acceptable glucose control (30). Umbilical cord blood levels of metformin are higher than simultaneous maternal levels (40,41). None of these studies or meta-analyses evaluated long-term outcomes in the offspring. Patients treated with oral agents should be informed that they cross the placenta, and although no adverse effects on the fetus have been demonstrated, long-term studies are lacking.

Randomized, double-blind, controlled trials comparing metformin with other therapies for ovulation induction in women with polycystic ovary syndrome have not demonstrated benefit in preventing spontaneous abortion or GDM (42), and there is no evidence-based need to continue metformin in such patients once pregnancy has been confirmed (43–45).

Insulin

Insulin may be required to treat hyperglycemia, and its use should follow the guidelines below. Both multiple daily insulin injections and continuous subcutaneous insulin infusion are reasonable alternatives, and neither has been shown to be superior during pregnancy (46).

PREGNANCY AND DRUG CONSIDERATIONS

Insulin Use

Recommendation

- Insulin is the preferred agent for management of both type 1 diabetes and type 2 diabetes in pregnancy because it does not cross the placenta, and because oral agents are generally insufficient to overcome the insulin resistance in type 2 diabetes and are ineffective in type 1 diabetes.

The physiology of pregnancy necessitates frequent titration of insulin to match changing requirements and underscores the importance of daily and frequent self-monitoring of blood glucose. In the first trimester, there is often a decrease in total daily insulin requirements, and women, particularly those with type 1 diabetes, may experience increased hypoglycemia. In the second trimester, rapidly increasing insulin resistance requires weekly or biweekly increases in insulin dose to achieve glycemic targets. In general, a smaller proportion of the total daily dose should be given as basal insulin (<50%) and a greater proportion (>50%) as prandial insulin. Late in the third trimester, there is often a leveling off or small decrease in insulin requirements. Due to the complexity of insulin management in pregnancy, referral to a specialized center offering team-based care (with team members including high-risk obstetrician, endocrinologist, or other provider experienced in managing pregnancy in women with preexisting diabetes, dietitian, nurse, and social worker, as needed) is recommended if this resource is available.

None of the currently available insulin preparations have been demonstrated to cross the placenta.

Preeclampsia and Aspirin

Recommendation

- Women with type 1 or type 2 diabetes should be prescribed low-dose aspirin 60–150 mg/day (usual dose 81 mg/day) from the end of the first trimester until the baby is born in order to lower the risk of preeclampsia.

Diabetes in pregnancy is associated with an increased risk of preeclampsia (47). Based upon the results of clinical trials, the U.S. Preventive Services Task Force recommends the use of low-dose aspirin (81 mg/day) as a preventive medication after 12 weeks of gestation in women who are at high risk for preeclampsia (48). A cost-benefit analysis has concluded that this approach would reduce morbidity, save lives, and lower health care costs (49).

Type 1 Diabetes

Women with type 1 diabetes have an increased risk of hypoglycemia in the first trimester and, like all women, have altered counterregulatory response in pregnancy that may decrease hypoglycemia awareness. Education for patients and family members about the prevention, recognition, and treatment of hypoglycemia is important before, during, and after pregnancy to help prevent and manage the risks of hypoglycemia. Insulin resistance drops rapidly with delivery of the placenta. Women become very insulin sensitive immediately following delivery and may initially require much less insulin than in the prepartum period.

Pregnancy is a ketogenic state, and women with type 1 diabetes, and to a lesser extent those with type 2 diabetes, are at risk for diabetic ketoacidosis at lower blood glucose levels than in the nonpregnant state. Women with preexisting diabetes, especially type 1 diabetes, need ketone strips at home and education on diabetic ketoacidosis prevention and detection. In addition, rapid implementation of tight glycemic control in the setting of retinopathy is associated with worsening of retinopathy (50).

Type 2 Diabetes

Type 2 diabetes is often associated with obesity. Recommended weight gain during pregnancy for overweight women is 15–25 lb and for obese women is 10–20 lb (51). Glycemic control is often easier to achieve in women with type 2 diabetes than in those with type 1 diabetes but can require much higher doses of insulin, sometimes necessitating concentrated insulin formulations. As in type 1 diabetes, insulin requirements drop dramatically after delivery. The risk for associated hypertension and other comorbidities may be as high or higher with type 2 diabetes as with type 1 diabetes, even if diabetes is better controlled and of shorter apparent duration, with pregnancy loss appearing to be more prevalent in the third trimester in women with type 2 diabetes compared with the first trimester in women with type 1 diabetes (52,53).
In normal pregnancy, blood pressure is lower than in the nonpregnant state. In a pregnancy complicated by diabetes and chronic hypertension, target goals for systolic blood pressure 120–160 mmHg and diastolic blood pressure 80–105 mmHg are reasonable (54). Lower blood pressure levels may be associated with impaired fetal growth. In a 2015 study targeting diastolic blood pressure of 100 mmHg versus 85 mmHg in pregnant women, only 6% of whom had GDM at enrollment, there was no difference in pregnancy loss, neonatal care, or other neonatal outcomes, although women in the less intensive treatment group had a higher rate of uncontrolled hypertension (55).

During pregnancy, treatment with ACE inhibitors and angiotensin receptor blockers is contraindicated because they may cause fetal renal dysplasia, oligohydramnios, and intrauterine growth restriction (8). Antihypertensive drugs known to be effective and safe in pregnancy include methyldopa, labetalol, diltiazem, clonidine, and prazosin. Chronic diuretic use during pregnancy is not recommended as it has been associated with restricted maternal plasma volume, which may reduce uteroplacental perfusion (56). On the basis of available evidence, statins should also be avoided in pregnancy (57).

POSTPARTUM CARE

Postpartum care should include psychosocial assessment and support for self-care.

Lactation

In light of the immediate nutritional and immunological benefits of breastfeeding for the baby, all women including those with diabetes should be supported in attempts to breastfeed. Breastfeeding may also confer longer-term metabolic benefits to both mother (58) and offspring (59).

Gestational Diabetes Mellitus

Initial Testing

Because GDM may represent preexisting undiagnosed type 2 or even type 1 diabetes, women with GDM should be tested for persistent diabetes or prediabetes at 4–12 weeks postpartum with a 75-g OGTT using nonpregnancy criteria as outlined in Section 2 “Classification and Diagnosis of Diabetes.”

Postpartum Follow-up

The OGTT is recommended over A1C at the time of the 4- to 12-week postpartum visit because A1C may be persistently impacted (lowered) by the increased red blood cell turnover related to pregnancy or blood loss at delivery and because the OGTT is more sensitive at detecting glucose intolerance, including both prediabetes and diabetes. Reproductive-aged women with prediabetes may develop type 2 diabetes by the time of their next pregnancy and will need preconception evaluation. Because GDM is associated with an increased lifetime maternal risk for diabetes estimated at 50–70% after 15–25 years (60,61), women should also be tested every 1–3 years thereafter if the 4- to 12-week 75-g OGTT is normal, with frequency of testing depending on other risk factors including family history, pre-pregnancy BMI, and need for insulin or oral glucose-lowering medication during pregnancy. Ongoing evaluation may be performed with any recommended glycemic test (e.g., A1C, fasting plasma glucose, or 75-g OGTT using nonpregnant thresholds).

Contraception

A major barrier to effective preconception care is the fact that the majority of pregnancies are unplanned. Planning pregnancy is critical in women with preexisting diabetes due to the need for preconception glycemic control and preventive health services. Therefore, all women with diabetes of childbearing potential should have family planning options reviewed at regular intervals. This applies to women in the immediate postpartum period. Women with diabetes have the same contraception options and recommendations as those without diabetes. The risk of an unplanned pregnancy outweighs the risk of any given contraception option.

Preexisting Type 1 and Type 2 Diabetes

Insulin sensitivity increases with delivery of the placenta and then returns to prepregnancy levels over the following 1–2 weeks. In women taking insulin, particular attention should be directed to hypoglycemia prevention in the setting of breastfeeding and erratic sleep and eating schedules.

References

45. Chew EY, Mills JL, Metzger BE, et al. Meta-bolic control and progression of retinopathy: The

61. Sutherland HW, Stowers JM, Pearson DWM (Eds.). *Carbohydrate Metabolism in Pregnancy and the Newborn IV*. Edinburgh, Churchill Livingstone, 1984

14. Diabetes Care in the Hospital: Standards of Medical Care in Diabetes—2018

The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

In the hospital, both hyperglycemia and hypoglycemia are associated with adverse outcomes, including death (1,2). Therefore, inpatient goals should include the prevention of both hyperglycemia and hypoglycemia. Hospitals should promote the shortest safe hospital stay and provide an effective transition out of the hospital that prevents acute complications and readmission.

For in-depth review of inpatient hospital practice, consult recent reviews that focus on hospital care for diabetes (3,4).

HOSPITAL CARE DELIVERY STANDARDS

Recommendation
- Perform an A1C on all patients with diabetes or hyperglycemia (blood glucose >140 mg/dL) admitted to the hospital if not performed in the prior 3 months. B

High-quality hospital care for diabetes requires both hospital care delivery standards, often assured by structured order sets, and quality assurance standards for process improvement. “Best practice” protocols, reviews, and guidelines (2) are inconsistently implemented within hospitals. To correct this, hospitals have established protocols for structured patient care and structured order sets, which include computerized physician order entry (CPOE).

Considerations on Admission
Initial orders should state the type of diabetes (i.e., type 1 or type 2 diabetes) or no previous history of diabetes. Because inpatient insulin use (5) and discharge orders (6) can be more effective if based on an A1C level on admission (7), perform an A1C test on all patients with diabetes or hyperglycemia admitted to the hospital if the test has not been performed in the prior 3 months. In addition, diabetes self-management knowledge and behaviors should be assessed on admission and diabetes self-management education (DSME) should be provided, if appropriate. DSME should include appropriate
skills needed after discharge, such as taking antihyperglycemic medications, monitoring glucose, and recognizing and treating hypoglycemia (2).

Physician Order Entry

Recommendation
- Insulin should be administered using validated written or computerized protocols that allow for predefined adjustments in the insulin dosage based on glycemic fluctuations.

The National Academy of Medicine recommends CPOE to prevent medication-related errors and to increase efficiency in medication administration (8). A Cochrane review of randomized controlled trials using computerized advice to improve glucose control in the hospital found significant improvement in the percentage of time patients spent in the target glucose range, lower mean blood glucose levels, and no increase in hyperglycemia (9). Thus, where feasible, there should be structured order sets that provide computerized advice for glucose control. Electronic insulin order templates also improve mean glucose levels without increasing hyperglycemia in patients with type 2 diabetes, so structured insulin order sets should be incorporated into the CPOE (10).

Diabetes Care Providers in the Hospital

Appropriately trained specialists or specialty teams may reduce length of stay, improve glycemic control, and improve outcomes, but studies are few (11,12). A call to action outlined the studies needed to evaluate these outcomes (13). Details of team formation are available from the Society of Hospital Medicine and the Joint Commission standards for programs.

Quality Assurance Standards

Even the best orders may not be carried out in a way that improves quality, nor are they automatically updated when new evidence arises. To this end, the Joint Commission has an accreditation program for the hospital care of diabetes (14), and the Society of Hospital Medicine has a workbook for program development (15).

GLYCEMIC TARGETS IN HOSPITALIZED PATIENTS

Recommendations
- Insulin therapy should be initiated for treatment of persistent hyperglycemia starting at a threshold ≥ 180 mg/dL (10.0 mmol/L). Once insulin therapy is started, a target glucose range of 140–180 mg/dL (7.8–10.0 mmol/L) is recommended for the majority of critically ill patients and noncritically ill patients. A more stringent goal, such as 110–140 mg/dL (6.1–7.8 mmol/L), may be appropriate for selected patients, if this can be achieved without significant hypoglycemia.

Standard Definition of Glucose Abnormalities

Hyperglycemia in hospitalized patients is defined as blood glucose levels >140 mg/dL (7.8 mmol/L) (2,16). Blood glucose levels that are persistently above this level may require alterations in diet or a change in medications that cause hyperglycemia. An admission A1C value $\geq 6.5\%$ (48 mmol/mol) suggests that diabetes preceded hospitalization (see Section 2 “Classification and Diagnosis of Diabetes”) (2,16). The hypoglycemia alert value in hospitalized patients is defined as blood glucose ≤ 70 mg/dL (3.9 mmol/L) (17) and clinically significant hypoglycemia as glucose values <54 mg/dL (3.0 mmol/L). Severe hypoglycemia is defined as that associated with severe cognitive impairment regardless of blood glucose level (17).

Moderate Versus Tight Glycemic Control

A meta-analysis of over 26 studies, including the Normoglycemia in Intensive Care Evaluation–Survival Using Glucose Algorithm Regulation (NICE-SUGAR) study, showed increased rates of severe hyperglycemia (defined in the analysis as blood glucose <40 mg/dL [2.2 mmol/L]) and mortality in tightly versus moderately controlled cohorts (18). Recent randomized controlled studies and meta-analyses in surgical patients have also reported that targeting moderate perioperative blood glucose levels to <180 mg/dL (10 mmol/L) is associated with lower rates of mortality and stroke compared with a liberal target glucose >200 mg/dL (11.1 mmol/L), whereas no significant additional benefit was found with more strict glycemic control (<140 mg/dL [7.8 mmol/L]) (19,20). Insulin therapy should be initiated for treatment of persistent hyperglycemia starting at a threshold ≥ 180 mg/dL (10.0 mmol/L). Once insulin therapy is started, a target glucose range of 140–180 mg/dL (7.8–10.0 mmol/L) is recommended for the majority of critically ill and noncritically ill patients (2). More stringent goals, such as <140 mg/dL (7.8 mmol/L), may be appropriate for selected patients, as long as this can be achieved without significant hypoglycemia. Conversely, higher glucose ranges may be acceptable in terminally ill patients, in patients with severe comorbidities, and in inpatient care settings where frequent glucose monitoring or close nursing supervision is not feasible.

Clinical judgment combined with ongoing assessment of the patient’s clinical status, including changes in the trajectory of glucose measures, illness severity, nutritional status, or concomitant medications that might affect glucose levels (e.g., glucocorticoids), should be incorporated into the day-to-day decisions regarding insulin doses (2).

BEDSIDE BLOOD GLUCOSE MONITORING

Indications

In the patient who is eating meals, glucose monitoring should be performed before meals. In the patient who is not eating, glucose monitoring is advised every 4–6 h (2). More frequent blood glucose testing ranging from every 30 min to every 2 h is required for patients receiving intravenous insulin. Safety standards should be established for blood glucose monitoring that prohibit the sharing of fingerstick lancets, lancets, and needles (21).

Point-of-Care Meters

Point-of-care (POC) meters have limitations for measuring blood glucose. Although the U.S. Food and Drug Administration (FDA) has standards for blood glucose meters used by lay persons, there have been questions about the appropriateness of these criteria, especially in the hospital and for lower blood glucose readings (22). Significant discrepancies between capillary, venous, and arterial plasma samples have been observed in patients with low or high hemoglobin concentrations and with hypoperfusion. Any glucose result that does not correlate with the patient’s clinical status should be confirmed through conventional laboratory glucose tests. The FDA established a separate category for POC glucose meters for use in health care settings and has released
guidance on in-hospital use with stricter standards (23). Before choosing a device for in-hospital use, consider the device’s approval status and accuracy.

Continuous Glucose Monitoring
Continuous glucose monitoring (CGM) provides frequent measurements of interstitial glucose levels, as well as direction and magnitude of glucose trends, which may have an advantage over POC glucose testing in detecting and reducing the incidence of hypoglycemia (24). Several inpatient studies have shown that CGM use did not improve glucose control but detected a greater number of hypoglycemic events than POC testing (25). However, a recent review has recommended against using CGM in adults in a hospital setting until more safety and efficacy data become available (25).

ANTIHYPERGLYCEMIC AGENTS IN HOSPITALIZED PATIENTS

Recommendations
- A basal plus bolus correction insulin regimen, with the addition of nutritional insulin in patients who have good nutritional intake, is the preferred treatment for noncritically ill patients. A
- Sole use of sliding scale insulin in the inpatient hospital setting is strongly discouraged. A

In most instances in the hospital setting, insulin is the preferred treatment for glycemic control (2). However, in certain circumstances, it may be appropriate to continue home regimens including oral antihyperglycemic medications (26). If oral medications are held in the hospital, there should be a protocol for resuming them 1–2 days before discharge. Insulin pens are the subject of an FDA warning because of potential blood-borne diseases, and care should be taken to follow the label insert “For single patient use only.” Recent reports, however, have indicated that the inpatient use of insulin pens appears to be safe and may be associated with improved nurse satisfaction compared with the use of insulin vials and syringes (27–29).

Insulin Therapy

Critical Care Setting
In the critical care setting, continuous intravenous insulin infusion has been shown to be the best method for achieving glycemic targets. Intravenous insulin infusions should be administered based on validated written or computerized protocols that allow for predefined adjustments in the infusion rate, accounting for glycemic fluctuations and insulin dose (2).

Noncritical Care Setting
Outside of critical care units, scheduled insulin regimens are recommended to manage hyperglycemia in patients with diabetes. Regimens using insulin analogs and human insulin result in similar glycemic control in the hospital setting (30).

The use of subcutaneous rapid- or short-acting insulin before meals or every 4–6 h if no meals are given or if the patient is receiving continuous enteral/parenteral nutrition is indicated to correct hyperglycemia (2). Basal insulin or a basal plus bolus correction insulin regimen is the preferred treatment for noncritically ill patients with poor oral intake or those who are taking nothing by mouth (NPO). An insulin regimen with basal, nutritional, and correction components is the preferred treatment for noncritically ill hospitalized patients with good nutritional intake.

If the patient is eating, insulin injections should align with meals. In such instances, POC glucose testing should be performed immediately before meals. If oral intake is poor, a safer procedure is to administer the rapid-acting insulin immediately after the patient eats or to count the carbohydrates and cover the amount ingested (30).

A randomized controlled trial has shown that basal-bolus treatment improved glycemic control and reduced hospital complications compared with sliding scale insulin in general surgery patients with type 2 diabetes (31). Prolonged sole use of sliding scale insulin in the inpatient hospital setting is strongly discouraged (2,13).

While there is evidence for using premixed insulin formulations in the outpatient setting (32), a recent inpatient study of 70/30 NPH/regular insulin versus basal-bolus therapy showed comparable glycemic control but significantly increased hypoglycemia in the group receiving premixed insulin (33). Therefore, premixed insulin regimens are not routinely recommended for in-hospital use.

Type 1 Diabetes
For patients with type 1 diabetes, dosing insulin based solely on premeal glucose levels does not account for basal insulin requirements or caloric intake, increasing both hypoglycemia and hyperglycemia risks and potentially leading to diabetic ketoacidosis (DKA). Typically, basal insulin dosing schemes are based on body weight, with some evidence that patients with renal insufficiency should be treated with lower doses (34). An insulin regimen with basal and correction components is necessary for all hospitalized patients with type 1 diabetes, with the addition of nutritional insulin if the patient is eating.

Transitioning Intravenous to Subcutaneous Insulin
When discontinuing intravenous insulin, a transition protocol is associated with less morbidity and lower costs of care (35) and is therefore recommended. A patient with type 1 or type 2 diabetes being transitioned to outpatient subcutaneous insulin should receive subcutaneous basal insulin 2–4 h before the intravenous insulin is discontinued. Converting to basal insulin at 60–80% of the daily infusion dose has been shown to be effective (2,35,36). For patients continuing regimens with concentrated insulin in the inpatient setting, it is important to ensure the correct dosing by utilizing an individual pen and cartridge for each patient, meticulous pharmacist supervision of the dose administered, or other means (37,38).

Noninsulin Therapies
The safety and efficacy of noninsulin antihyperglycemic therapies in the hospital setting is an area of active research. A few recent randomized pilot trials in general medicine and surgery patients reported that a dipeptidyl peptidase 4 inhibitor alone or in combination with basal insulin was well tolerated and resulted in similar glucose control and frequency of hypoglycemia compared with a basal-bolus regimen (39–41). However, a recent FDA bulletin states that providers should consider discontinuing saxagliptin and alogliptin in people who develop heart failure (42). A review of antihyperglycemic medications concluded that glucagon-like peptide 1 receptor agonists show promise in the inpatient setting (43); however, proof of safety and efficacy awaits the results of randomized
controlled trials (44). Moreover, the gastrointestinal symptoms associated with the glucagon-like peptide 1 receptor agonists may be problematic in the inpatient setting.

Regarding the sodium–glucose transporter 2 (SGLT2) inhibitors, the FDA includes warnings about DKA and urosepsis (45), urinary tract infections, and kidney injury (46) on the drug labels. A recent review suggested SGLT2 inhibitors be avoided in severe illness, when ketone bodies are present, and during prolonged fasting and surgical procedures (3). Until safety and effectiveness are established, SGLT2 inhibitors cannot be recommended for routine in-hospital use.

Recommendations
- A hypoglycemia management protocol should be adopted and implemented by each hospital or hospital system. A plan for preventing and treating hypoglycemia should be established for each patient. Episodes of hypoglycemia in the hospital should be documented in the medical record and tracked.
- The treatment regimen should be reviewed and changed as necessary to prevent further hypoglycemia when a blood glucose value is \(\leq 70\) mg/dL (3.9 mmol/L).

Predictors of Hypoglycemia

In one study, 84% of patients with an episode of severe hypoglycemia (\(<40\) mg/dL [2.2 mmol/L]) had a prior episode of hypoglycemia (\(<70\) mg/dL [3.9 mmol/L]) during the same admission (47). In another study of hypoglycemic episodes (\(<50\) mg/dL [2.8 mmol/L]), 78% of patients were using basal insulin, with the incidence of hypoglycemia peaking between midnight and 6 a.m. Despite recognition of hypoglycemia, 75% of patients did not have their dose of basal insulin changed before the next insulin administration (48).

Prevention

Common preventable sources of iatrogenic hypoglycemia are improper prescribing of hypoglycemic medications, inappropriate management of the first episode of hypoglycemia, and nutrition–insulin mismatch, often related to an unexpected interruption of nutrition. Studies of “bundled” preventative therapies including proactive surveillance of glycemic outliers and an interdisciplinary data-driven approach to glycemic management showed that hypoglycemic episodes in the hospital could be prevented. Compared with baseline, two such studies found that hypoglycemic events fell by 56% to 80% (49,50). The Joint Commission recommends that all hypoglycemic episodes be evaluated for a root cause and the episodes be aggregated and reviewed to address systemic issues.

MEDICAL NUTRITION THERAPY IN THE HOSPITAL

The goals of medical nutrition therapy in the hospital are to provide adequate calories to meet metabolic demands, optimize glycemic control, address personal food preferences, and facilitate creation of a discharge plan. The ADA does not endorse any single meal plan or specified percentages of macronutrients. Current nutrition recommendations advise individualization based on treatment goals, physiological parameters, and medication use. Consistent carbohydrate meal plans are preferred by many hospitals as they facilitate matching the prandial insulin dose to the amount of carbohydrate consumed (51). Regarding enteral nutritional therapy, diabetes-specific formulas appear to be superior to standard formulas in controlling postprandial glucose, A1C, and the insulin response (52).

When the nutritional issues in the hospital are complex, a registered dietitian, knowledgeable and skilled in medical nutrition therapy, can serve as an individual inpatient team member. That person should be responsible for integrating information about the patient’s clinical condition, meal planning, and lifestyle habits and for establishing realistic treatment goals after discharge. Orders should also indicate that the meal delivery and nutritional insulin coverage should be coordinated, as their variability often creates the possibility of hyperglycemic and hypoglycemic events.

SELF-MANAGEMENT IN THE HOSPITAL

Diabetes self-management in the hospital may be appropriate for select youth and adult patients (53,54). Candidates include patients who successfully conduct self-management of diabetes at home, have the cognitive and physical skills needed to successfully self-administer insulin, and perform self-monitoring of blood glucose. In addition, they should have adequate oral intake, be proficient in carbohydrate estimation, use multiple daily insulin injections or continuous subcutaneous insulin infusion (CSII) pump therapy, have stable insulin requirements, and understand sick-day management. If self-management is to be used, a protocol should include a requirement that the patient, nursing staff, and physician agree that patient self-management is appropriate. If
CSII is to be used, hospital policy and procedures delineating guidelines for CSII therapy, including the changing of infusion sites, are advised (55).

STANDARDS FOR SPECIAL SITUATIONS

Enteral/Parenteral Feedings

For patients receiving enteral or parenteral feedings who require insulin, insulin should be divided into basal, nutritional, and correctional components. This is particularly important for people with type 1 diabetes to ensure that they continue to receive basal insulin even if the feedings are discontinued. One may use the patient’s preadmission basal insulin dose or a percentage of the total daily dose of insulin when the patient is being fed (usually 30 to 50% of the total daily dose of insulin) to estimate basal insulin requirements. However, if no basal insulin was used, consider using 5 units of NPH/detemir insulin subcutaneously every 12 h or 10 units of insulin glargine every 24 h (56). For patients receiving continuous tube feedings, the total daily nutritional component may be calculated as 1 unit of insulin for every 10–15 g carbohydrate per day or as a percentage of the total daily dose of insulin when the patient is being fed (usually 50 to 70% of the total daily dose of insulin). Correctional insulin should also be administered subcutaneously every 6 h using human regular insulin or every 4 h using a rapid-acting insulin such as lispro, aspart, or glulisine. For patients receiving enteral bolus feedings, approximately 1 unit of regular human insulin or rapid-acting insulin should be given per 10–15 g carbohydrate subcutaneously before each feeding.

Correctional insulin coverage should be added as needed before each feeding. For patients receiving continuous peripheral or central parenteral nutrition, regular insulin may be added to the solution, particularly if >20 units of correctional insulin have been required in the past 24 h. A starting dose of 1 unit of human regular insulin for every 10 g dextrose has been recommended (57), to be adjusted daily in the solution. Correctional insulin should be administered subcutaneously. For full enteral/parenteral feeding guidance, the reader is encouraged to consult review articles (2,58) and see Table 14.1.

Glucocorticoid Therapy

Glucocorticoid type and duration of action must be considered in determining insulin treatment regimens. Once-a-day, short-acting glucocorticoids such as prednisone peak in about 4 to 8 h (59), so coverage with intermediate-acting (NPH) insulin may be sufficient. For long-acting glucocorticoids such as dexamethasone or multidose or continuous glucocorticoid use, long-acting insulin may be used (26,58). For higher doses of glucocorticoids, increasing doses of prandial and supplemental insulin may be needed in addition to basal insulin (60). Whatever orders are started, adjustments based on anticipated changes in glucocorticoid dosing and POC glucose test results are critical.

Perioperative Care

Many standards for perioperative care lack a robust evidence base. However, the following approach (61) may be considered:

1. Target glucose range for the perioperative period should be 80–180 mg/dL (4.4–10.0 mmol/L).
2. Perform a preoperative risk assessment for patients at high risk for ischemic heart disease and those with autonomic neuropathy or renal failure.
3. Withhold metformin the day of surgery.
4. Withhold any other oral hypoglycemic agents the morning of surgery or procedure and give half of NPH dose or 60–80% doses of a long-acting analog or pump basal insulin.
5. Monitor blood glucose at least every 4–6 h while NPO and dose with short-acting insulin as needed.

A review found that perioperative glycemic control tighter than 80–180 mg/dL (4.4–10.0 mmol/L) did not improve outcomes and was associated with more hypoglycemia (62); therefore, in general, tighter glycemic targets are not advised. A recent study reported that, compared with the usual insulin dose, on average a ~25% reduction in the insulin dose given the evening before surgery was more likely to achieve perioperative blood glucose levels in the target range with decreased risk for hypoglycemia (63).

In noncardiac general surgery patients, basal insulin plus premeal regular or short-acting insulin (basal-bolus) coverage has been associated with improved glycemic control and lower rates of perioperative complications compared with the traditional sliding scale regimen (regular or short-acting insulin coverage only with no basal dosing) (31,64).

Diabetic Ketoacidosis and Hyperosmolar Hyperglycemic State

There is considerable variability in the presentation of DKA and hyperosmolar

| Table 14.1—Insulin dosing for enteral/parenteral feedings |
|---------------------------------|-----------------|-----------------|
| **Situation** | **Basal/nutritional** | **Correctional** |
| Continuous enteral feedings | Continue prior basal or, if none, calculate from TDD or consider 5 units NPH/detemir insulin every 12 h or 10 units glargine/degludec daily Nutritional: regular insulin every 6 h or rapid-acting insulin every 4 h, starting with 1 unit per 10–15 g of carbohydrate; adjust daily | SQ regular insulin every 6 h or rapid-acting insulin every 4 h for hyperglycemia |
| Bolus enteral feedings | Continue prior basal or, if none, calculate from TDD or consider 5 units NPH/detemir insulin every 12 h or 10 units glargine/degludec daily Nutritional: give regular insulin or rapid-acting insulin SQ before each feeding, starting with 1 unit per 10–15 g of carbohydrate; adjust daily | SQ regular insulin every 6 h or rapid-acting insulin every 4 h for hyperglycemia |
| Parenteral feedings | Add regular insulin to TPN IV solution, starting with 1 unit per 10 g of carbohydrate; adjust daily | SQ regular insulin every 6 h or rapid-acting insulin every 4 h for hyperglycemia |

IV, intravenous; SQ, subcutaneous; TDD, total daily dose; TPN, total parenteral nutrition.
hypoglycemic state, ranging from euglycemia or mild hyperglycemia and acidosis to severe hyperglycemia, dehydration, and coma; therefore, treatment individualization based on a careful clinical and laboratory assessment is needed (65).

Management goals include restoration of circulatory volume and tissue perfusion, resolution of hyperglycemia, and correction of electrolyte imbalance and ketosis. It is also important to treat any correctable underlying cause of DKA such as sepsis.

In critically ill and mentally obtunded patients with DKA or hyperosmolar hyperglycemic state, continuous intravenous insulin is the standard of care. However, there is no significant difference in outcomes for intravenous regular insulin versus subcutaneous rapid-acting analogs when combined with aggressive fluid management for treating mild or moderate DKA (66). Patients with uncomplicated DKA may sometimes be treated with subcutaneous insulin in the emergency department or step-down units (67), an approach that may be safer and more cost-effective than treatment with intravenous insulin (68). If subcutaneous administration is used, it is important to provide adequate fluid replacement, nurse training, frequent bedside testing, infection treatment if warranted, and appropriate follow-up to avoid recurrent DKA. Several studies have shown that the use of bicarbonate in patients with DKA made no difference in resolution of acidosis or time to discharge, and its use is generally not recommended (69). For further information regarding treatment, refer to recent in-depth reviews (3,70).

TRANSITION FROM THE ACUTE CARE SETTING

Recommendation
- There should be a structured discharge plan tailored to the individual patient with diabetes. B

A structured discharge plan tailored to the individual patient may reduce length of hospital stay and readmission rates and increase patient satisfaction (71). Therefore, there should be a structured discharge plan tailored to each patient. Discharge planning should begin at admission and be updated as patient needs change.

Transition from the acute care setting is a risky time for all patients. Inpatients may be discharged to varied settings, including home (with or without visiting nurse services), assisted living, rehabilitation, or skilled nursing facilities. For the patient who is discharged to home or to assisted living, the optimal program will need to consider diabetes type and severity, effects of the patient’s illness on blood glucose levels, and the patient’s capacities and desires.

An outpatient follow-up visit with the primary care provider, endocrinologist, or diabetes educator within 1 month of discharge is advised for all patients having hyperglycemia in the hospital. If glycemic medications are changed or glucose control is not optimal at discharge, an earlier appointment (in 1–2 weeks) is preferred, and frequent contact may be needed to avoid hyperglycemia and hypoglycemia. A recent discharge algorithm for glycemic medication adjustment based on admission A1C found that the average A1C in patients with diabetes after discharge was significantly improved (6). Therefore, if an A1C from the prior 3 months is unavailable, measuring the A1C in all patients with diabetes or hyperglycemia admitted to the hospital is recommended.

Clear communication with outpatient providers either directly or via hospital discharge summaries facilitates safe transitions to outpatient care. Providing information regarding the cause of hyperglycemia (or the plan for determining the cause), related complications and comorbidities, and recommended treatments can assist outpatient providers as they assume ongoing care.

The Agency for Healthcare Research and Quality (AHRQ) recommends that, at a minimum, discharge plans include the following (72):

Medication Reconciliation
- The patient’s medications must be cross-checked to ensure that no chronic medications were stopped and to ensure the safety of new prescriptions.
- Prescriptions for new or changed medication should be filled and reviewed with the patient and family at or before discharge.

Structured Discharge Communication
- Information on medication changes, pending tests and studies, and follow-up needs must be accurately and promptly communicated to outpatient physicians.
- Discharge summaries should be transmitted to the primary physician as soon as possible after discharge.
- Appointment-keeping behavior is enhanced when the inpatient team schedules outpatient medical follow-up prior to discharge.

It is recommended that the following areas of knowledge be reviewed and addressed prior to hospital discharge:
- Identification of the health care provider who will provide diabetes care after discharge.
- Level of understanding related to the diabetes diagnosis, self-monitoring of blood glucose, explanation of home blood glucose goals, and when to call the provider.
- Definition, recognition, treatment, and prevention of hyperglycemia and hypoglycemia.
- Information on consistent nutrition habits.
- If relevant, when and how to take blood glucose–lowering medications, including insulin administration.
- Sick-day management.
- Proper use and disposal of needles and syringes.

It is important that patients be provided with appropriate durable medical equipment, medications, supplies (e.g., insulin pens), and prescriptions along with appropriate education at the time of discharge in order to avoid a potentially dangerous hiatus in care.

PREVENTING ADMISSIONS AND READMISSIONS

Preventing Hypoglycemic Admissions in Older Adults

Insulin-treated patients 80 years of age or older are more than twice as likely to visit the emergency department and nearly five times as likely to be admitted for insulin-related hypoglycemia than those 45–64 years of age (73). However, older adults with type 2 diabetes in long-term care facilities taking either oral antihyperglycemic agents or basal insulin have similar glycemic control (74), suggesting that oral therapy may be used in place of insulin to lower the risk of hypoglycemia for some patients. In addition, many older adults with diabetes are overtreated (75), with half of those maintaining an A1C <7% being treated with insulin or a sulfonylurea,
which are associated with hypoglycemia. To further lower the risk of hypoglycemia-related admissions in older adults, providers may, on an individual basis, relax A1C targets to <8% or <8.5% in patients with shortened life expectancies and significant comorbidities (refer to Section 11 “Older Adults” for detailed criteria).

Preventing Readmissions

In patients with diabetes, the readmission rate is between 14 and 20% (76). Risk factors for readmission include lower socioeconomic status, certain racial/ethnic minority groups, comorbidities, urgent admission, and recent prior hospitalization (76). Of interest, 30% of patients with two or more hospital stays account for over 50% of hospitalizations and their accompanying hospital costs (77). While there is no standard to prevent readmissions, several successful strategies have been reported, including an intervention program targeting ketosis-prone patients with type 1 diabetes (78), initiating insulin treatment in patients with admission A1C >9% (79), and a transitional care model (80). For people with diabetic kidney disease, patient-centered medical home collaboratives may decrease risk-adjusted readmission rates (81).

References

20. Umpierrez GE, Cardona S, Pasquel F, et al. Randomized controlled trial of intensive versus conventional glucose control in patients undergoing coronary artery bypass graft surgery: GLUCO-
35. Schmeltz LR, DeSantis AJ, Thiyagarajan V, et al. Reduction of surgical mortality and morbidity in diabetic patients undergoing cardiac surgery with a combined intravenous and subcutaneous...
insulin glucose management strategy. Diabetes Care 2007;30:823–828
44. Umpierrez GE, Korytkowski M. Is incretin-based therapy ready for the care of hospitalized patients with type 2 diabetes?: Insulin therapy has proven itself and is considered the mainstay of treatment. Diabetes Care 2013;36:2112–2117
The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

Managing the daily health demands of diabetes can be challenging. People living with diabetes should not have to face additional discrimination due to diabetes. By advocating for the rights of those with diabetes at all levels, the American Diabetes Association (ADA) can help to ensure that they live a healthy and productive life. A strategic goal of the ADA is that more children and adults with diabetes live free from the burden of discrimination.

One tactic for achieving this goal is to implement the ADA’s Standards of Care through advocacy-oriented position statements. The ADA publishes evidence-based, peer-reviewed statements on topics such as diabetes and employment, diabetes and driving, and diabetes management in certain settings such as schools, child care programs, and correctional institutions. In addition to the ADA’s clinical position statements, these advocacy position statements are important tools in educating schools, employers, licensing agencies, policy makers, and others about the intersection of diabetes medicine and the law.

ADVOCACY POSITION STATEMENTS
Partial list, with the most recent publications appearing first

Diabetes Care in the School Setting (1)
First publication: 1998 (revised 2015)
A sizeable portion of a child’s day is spent in school, so close communication with and cooperation of school personnel are essential to optimize diabetes management, safety, and academic opportunities. See the ADA position statement “Diabetes Care in the School Setting” (http://care.diabetesjournals.org/content/38/10/1958.full).

Care of Young Children With Diabetes in the Child Care Setting (2)
First publication: 2014
Very young children (aged <6 years) with diabetes have legal protections and can be safely cared for by child care providers with appropriate training, access to
resources, and a system of communication with parents and the child’s diabetes provider. See the ADA position statement “Care of Young Children With Diabetes in the Child Care Setting” (http://care.diabetesjournals.org/content/37/10/2834).

Diabetes and Driving (3)
First publication: 2012
People with diabetes who wish to operate motor vehicles are subject to a great variety of licensing requirements applied by both state and federal jurisdictions, which may lead to loss of employment or significant restrictions on a person’s license. Presence of a medical condition that can lead to significantly impaired consciousness or cognition may lead to drivers being evaluated for their fitness to drive. People with diabetes should be individually assessed by a health care professional knowledgeable in diabetes if license restrictions are being considered, and patients should be counseled about detecting and avoiding hypoglycemia while driving. See the ADA position statement “Diabetes and Driving” (http://care.diabetesjournals.org/content/37/Supplement_1/S97).

Diabetes and Employment (4)
First publication: 1984 (revised 2009)
Any person with diabetes, whether insulin treated or noninsulin treated, should be eligible for any employment for which he or she is otherwise qualified. Employment decisions should never be based on generalizations or stereotypes regarding the effects of diabetes. When questions arise about the medical fitness of a person with diabetes for a particular job, a health care professional with expertise in treating diabetes should perform an individualized assessment. See the ADA position statement “Diabetes and Employment” (http://care.diabetesjournals.org/content/37/Supplement_1/S112).

Diabetes Management in Correctional Institutions (5)
First publication: 1989 (revised 2008)
People with diabetes in correctional facilities should receive care that meets national standards. Because it is estimated that nearly 80,000 inmates have diabetes, correctional institutions should have written policies and procedures for the management of diabetes and for the training of medical and correctional staff in diabetes care practices. See the ADA position statement “Diabetes Management in Correctional Institutions” (http://care.diabetesjournals.org/content/37/Supplement_1/S104).

References
Professional Practice Committee, American College of Cardiology—Designated Representatives, and American Diabetes Association Staff Disclosures

Diabetes Care 2018;41(Suppl. 1):S154–S155 | https://doi.org/10.2337/dc18-SDIS01

The following financial or other conflicts of interest cover the period 12 months before December 2017

<table>
<thead>
<tr>
<th>Member</th>
<th>Employment</th>
<th>Research grant</th>
<th>Other research support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rita R. Kalyani, MD, MHS, FACP (Chair)</td>
<td>Johns Hopkins University, Baltimore, MD</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Christopher P. Cannon, MD</td>
<td>Brigham and Women’s Hospital, Boston, MA</td>
<td>Amgen, Arisaph, Boehringer Ingelheim, Bristol-Myers Squibb, Daiichi Sankyo, Janssen, Merck, Takeda</td>
<td>None</td>
</tr>
<tr>
<td>Andrea L. Cherrington, MD, MPH</td>
<td>University of Alabama, Birmingham, AL</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Donald R. Coustan, MD</td>
<td>The Warren Alpert Medical School of Brown University, Providence, RI</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Ian H. de Boer, MD, MS</td>
<td>University of Washington, Seattle, WA</td>
<td>Research grant from ADA</td>
<td>Medtronic, Abbott</td>
</tr>
<tr>
<td>Hope Feldman, CRNP, FNP-BC</td>
<td>Abbottsford-Falls Family Practice & Counseling, Philadelphia, PA</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Judith Fradkin, MD</td>
<td>National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>David Maahs, MD, PhD</td>
<td>Stanford University, School of Medicine, Stanford, CA</td>
<td>Medtronic, Dexcom, Roche, Insulet, Bigfoot</td>
<td>None</td>
</tr>
<tr>
<td>Melinda Maryniuk, MEd, RD, CDE</td>
<td>Joslin Diabetes Center, Boston, MA</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Medha N. Munshi, MD</td>
<td>Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA</td>
<td>None</td>
<td>Common Sensing</td>
</tr>
<tr>
<td>Joshua J. Neumiller, PharmD, CDE, FASCP</td>
<td>Washington State University, Spokane, WA</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Guillermo E. Umpierrez, MD, CDE, FACE, FACP</td>
<td>Emory University, Atlanta, GA</td>
<td>Sanofi, Novo Nordisk, Merck, Boehringer Ingelheim, AstraZeneca</td>
<td>None</td>
</tr>
<tr>
<td>Sandeep Das, MD, MPH</td>
<td>University of Texas Southwestern Medical Center</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mikhail Kosiborod, MD</td>
<td>University of Missouri-Kansas City School of Medicine</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>William T. Cefalu, MD (Staff)</td>
<td>American Diabetes Association, Arlington, VA</td>
<td>Sanofi*#</td>
<td>None</td>
</tr>
<tr>
<td>Erika Gebel Berg, PhD (Staff)</td>
<td>American Diabetes Association, Arlington, VA</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Tamara Darsow, PhD (Staff)</td>
<td>American Diabetes Association, Arlington, VA</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Matthew P. Petersen (Staff)</td>
<td>American Diabetes Association, Arlington, VA</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Sacha Uelmen, RDN, CDE (Staff)</td>
<td>American Diabetes Association, Arlington, VA</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Member</td>
<td>Speakers’ bureau/honoraria</td>
<td>Ownership interest</td>
<td>Consultant/advisory board</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------------</td>
<td>--------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>R.R.K.</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>C.P.C.</td>
<td>None</td>
<td>None</td>
<td>AstraZeneca, Amgen, Arisaph, AstraZeneca, Boehringer Ingelheim, Bristol-Myers Squibb, Eisai, GlaxoSmithKline, Kowa, Lipimedix, Merck, Pfizer, Regeneron, Sanofi, Takeda</td>
</tr>
<tr>
<td>A.L.C.</td>
<td>AstraZeneca (Women Scientists Board)</td>
<td>Connection Health (Volunteer Chief Medical Officer)</td>
<td>None</td>
</tr>
<tr>
<td>D.R.C.</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>I.H.d.B.</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>H.F.</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>J.F.</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>D.M.</td>
<td>None</td>
<td>None</td>
<td>Insulet, Helmsley Charitable Trust</td>
</tr>
<tr>
<td>M.M.</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>M.N.M.</td>
<td>Novo Nordisk, Sanofi, Eli Lilly</td>
<td>None</td>
<td>Sanofi</td>
</tr>
<tr>
<td>J.J.N.</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>G.E.U.</td>
<td>None</td>
<td>None</td>
<td>Sanofi</td>
</tr>
<tr>
<td>S.D.</td>
<td>None</td>
<td>None</td>
<td>Roche Diagnostic</td>
</tr>
<tr>
<td>M.K.</td>
<td>None</td>
<td>None</td>
<td>AstraZeneca, Sanofi, GlaxoSmithKline, Amgen, Boehringer Ingelheim, Novo Nordisk, Merck (Diabetes), Eisai, ZS Pharma, Glytec, Janssen, Intarcia, Novartis</td>
</tr>
<tr>
<td>W.T.C.</td>
<td>None</td>
<td>None</td>
<td>Sanofi, Intarcia, Adocia</td>
</tr>
<tr>
<td>E.G.B.</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>T.D.</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>M.P.P.</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>S.U.</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

*American College of Cardiology—designated representative (Section 9); $10,000 per year from company to individual; #grant or contract is to university or other employer; †prior to joining ADA, no active disclosures.
Index

kidney disease
acute kidney injury, S89, S106–S107
albuminuria assessment, S106
children, adolescents, S131
complications of, S107
diagnosis of, S106
eGFR assessment, S106
epidemiology, S106
glucose-lowering medications, S108
glycemic control, S108
hypertension and, S108–S109
interventions, S107–S109
nutrition therapy, S107–S108
physical activity and, S44
proteins, dietary, S42
recommendations, S105–S106
revisions summary, S5
screening, S105
stages, S106, S107
surveillance, S107
treatment, S105–S106
Kumamoto Study, S59

language barriers, S10
laropiprant, S94
LEADER trial, S97–S98, S100, S108
lifestyle management
cardiovascular disease, S99
children, adolescents, S132
cost-effectiveness model, S52–S53
DSMES, S8, S38–S39, S53
gestational diabetes mellitus, S139
hypertension, S88–S89
lipids, S91
nutrition therapy, S39–S43, S52
physical activity/exercise, S43–S44, S52, S66–S67
psychosocial issues, S34, S45–S46
recommendations, S38
revisions summary, S4
smoking cessation, S44–S45
technology platforms, S52
weight, S41, S52, S66–S67, S88
linagliptin, S79, S81
lipase inhibitors, S68
lipid management
in children and adolescents, S130
hyperglycemia, S94
lifestyle modifications, S91
revisions summary, S5
stains, S33, S91–S95
therapy, monitoring, S91
ligludotide (Saxenda), S69, S80, S81, S82, S97–S98, S108
lisdopromide, S80, S82
lixisenatide, S80, S81, S82, S97–S98, S100
Lomaira (phentermine), S68
Look AHEAD trial, S66, S99
lorcaserin (Belviq), S68
loss of protective sensation (LOPS), S111, S113–S114
lovastatin, S92
maturity-onset diabetes/young (MODY), S23–S24
meal planning, S39–S43, S52, S88, S107–S108
medical evaluation
immunizations, S29–S30
pre-exercise, S44
recommendations, S29
referrals, S32, S46, S109
medical nutrition therapy (MNT), S29, S38–S43, S52, S91, S107–S108, S139, S147. see also nutrition therapy
Medicare, S39
medications. see also specific drugs and drug classes
cardiovascular outcomes trials, S77–S81
combination therapy, S75–S81, S83, S93
costs, S81–S82
CVOTs, S97–S100
diabetes screening, S20
efficacy, safety assessment, S67
obesity management, S67–S69
pharmacology, S79–S80
recommendations, S53
type 1 diabetes, S73–S75
type 2 diabetes, S75–S83
Mediterranean diet, S33, S41, S42
meglitinides (glinides), S79, S81
metformin
A1C guidelines, S4
in CKD, S108
coronary heart disease, S96
costs, S81
CVD risk reduction agents with, S100–S101
in GDM, S140
pharmacology, S79
type 1 diabetes, S74
type 2 diabetes, S53, S75–S78
metoclopramide, S113
micronutrients, in MNT, S40, S42
microvascular complications, S5. see also specific conditions
miglitol, S79, S81
mineralocorticoid receptor antagonists, S91, S105
mobile apps, S52
modified plate method, S42
nateglinide, S79, S81
National Diabetes Education Program, S8
National Quality Strategy, S9
neonatal diabetes screening, S22–S23
nephropathy. see kidney disease
neuropathic pain, S112
neuropathy, S44, S111
neuropathic pain, S112–S113
neuropathy, S44, S111–S113, S131
new-onset diabetes after transplantation (NODAT), S24–S25
niacin, S94
NPH, S80, S82, S83, S148
nutrition therapy
alcohol, S40, S42–S43, S88
carbohydrates, S40–S42
comorbidities, S33
diet, S41
fats (dietary), S40, S42
in GDM, S139
herbal supplements, S40, S42
hospital care, S147
kidney disease, S107–S108
lifestyle management, S39–S43, S52
Mediterranean diet, S33, S41, S42
older adults, S123
proteins, S40, S42
obesity management
assessment, S65–S66
diabetes screening, S20
diet, physical activity, behavioral therapy, S43–S44, S52, S66–S67
medications, S67–S69
metabolic surgery, S67–S70
prediabetes screening, S16
prediabetes testing recommendations, S4, S5
recommendations, S65, S66
treatment options, S66
obstructive sleep apnea, S34
older adults
A1C in, S121
admission/readmission prevention, S149–S150
alert strategy, S123
aspirin use in, S96
assisted living facilities, S123
cognitive impairment/dementia, S32, S95, S120
CVD primary prevention, S93
hypertension in, S120, S121
hypoglycemia, S61–S62
hypoglycemia in, S120, S123
insulin therapy, S122–S123
LTC facilities, S123
nutrition, S123
palliative, end-of-life care, S122–S124
pharmacologic therapies, S122–S123
recommendations, S119
revisions summary, S5
stains, S33, S91–S95
treatment goals, S60, S120–S122
orlistat (Alli), S68
orlistat (Xenical), S68
orthostatic hypotension, S113
palliative, end-of-life care, S122–S124
pancreas, pancreatic islet transplantation, S33, S74–S75
pancreatitis, S33
patient-centered care, S7–S8, S28–S29
Patient-Centered Medical Home, S8
PCS9 inhibitors, S92–S95
pediatric to adult care transition, S133
periodontal disease, S34
peripheral arterial disease, S114
peripheral neuropathy, S44, S111–S113
pharmacotherapy. see medications; specific medications by name
phentermine (Lomaira), S68
photocoagulation surgery, S109–S111
physical activity/exercise, S43–S44, S52, S66–S67
pioglitazone, S79, S81
pitavastatin, S92
plant-based diets, S41
plasma glucose testing, S15
pneumococcal pneumonia, S29, S32
point-of-care (POC) meters, S145–S146
population health
care delivery systems, S8
Chronic Care Model, S8–S10, S28
community support, S10
defined, S7
food insecurity, S9–S10
homelessness, S10
language barriers, S10
patient-centered care, S7–S8
recommendations, S7
revisions summary, S4
social context, determinants, S9
system-level improvement strategies, S8
Join us in Orlando, FL, June 22-26, 2018 for the world’s largest meeting on diabetes—the American Diabetes Association’s 78th Scientific Sessions.

• Receive exclusive access to over 2,800 original research presentations highlighting the latest advances in diabetes research and care.
• Earn up to 35 CME/CE credits.
• Take part in provocative and engaging exchanges with leading diabetes experts.
• Expand your professional network by interacting with nearly 13,000 colleagues from around the world.

Visit scientificsessions.diabetes.org for the latest program information and to register.